deeptagger: add an example of how to use it
And refer to CAFormer correctly.
This commit is contained in:
parent
454cfd688c
commit
aa65466a49
@ -47,7 +47,18 @@ Options
|
||||
--pipe::
|
||||
Take input filenames from the standard input.
|
||||
--threshold 0.1::
|
||||
Output weight threshold. Needs to be set very high on ML-Danbooru models.
|
||||
Output weight threshold. Needs to be set higher on ML-Danbooru models.
|
||||
|
||||
Tagging galleries
|
||||
-----------------
|
||||
The appropriate invocation depends on your machine, and the chosen model.
|
||||
Unless you have a powerful machine, or use a fast model, it may take forever.
|
||||
|
||||
$ find "$GALLERY/images" -type f \
|
||||
| build/deeptagger --pipe -b 16 -t 0.5 \
|
||||
models/ml_caformer_m36_dec-5-97527.model \
|
||||
| sed 's|[^\t]*/||' \
|
||||
| gallery tag "$GALLERY" caformer "ML-Danbooru CAFormer"
|
||||
|
||||
Model benchmarks (Linux)
|
||||
------------------------
|
||||
@ -65,14 +76,14 @@ GPU inference
|
||||
|WD v1.4 ViT v2 (batch)|16|19 s
|
||||
|DeepDanbooru|16|21 s
|
||||
|WD v1.4 SwinV2 v2 (batch)|16|21 s
|
||||
|ML-Danbooru Caformer dec-5-97527|16|25 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|16|25 s
|
||||
|WD v1.4 ViT v2 (batch)|4|27 s
|
||||
|WD v1.4 SwinV2 v2 (batch)|4|30 s
|
||||
|DeepDanbooru|4|31 s
|
||||
|ML-Danbooru TResNet-D 6-30000|16|31 s
|
||||
|WD v1.4 MOAT v2 (batch)|16|31 s
|
||||
|WD v1.4 ConvNeXT v2 (batch)|16|32 s
|
||||
|ML-Danbooru Caformer dec-5-97527|4|32 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|4|32 s
|
||||
|WD v1.4 ConvNeXTV2 v2 (batch)|16|36 s
|
||||
|ML-Danbooru TResNet-D 6-30000|4|39 s
|
||||
|WD v1.4 ConvNeXT v2 (batch)|4|39 s
|
||||
@ -80,7 +91,7 @@ GPU inference
|
||||
|WD v1.4 ConvNeXTV2 v2 (batch)|4|43 s
|
||||
|WD v1.4 ViT v2|1|43 s
|
||||
|WD v1.4 ViT v2 (batch)|1|43 s
|
||||
|ML-Danbooru Caformer dec-5-97527|1|52 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|1|52 s
|
||||
|DeepDanbooru|1|53 s
|
||||
|WD v1.4 MOAT v2|1|53 s
|
||||
|WD v1.4 ConvNeXT v2|1|54 s
|
||||
@ -110,7 +121,7 @@ CPU inference
|
||||
|WD v1.4 ConvNeXTV2 v2|1|245 s
|
||||
|WD v1.4 ConvNeXTV2 v2 (batch)|4|268 s
|
||||
|WD v1.4 ViT v2 (batch)|16|270 s
|
||||
|ML-Danbooru Caformer dec-5-97527|4|270 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|4|270 s
|
||||
|WD v1.4 ConvNeXT v2 (batch)|1|272 s
|
||||
|WD v1.4 SwinV2 v2 (batch)|4|277 s
|
||||
|WD v1.4 ViT v2 (batch)|4|277 s
|
||||
@ -118,7 +129,7 @@ CPU inference
|
||||
|WD v1.4 SwinV2 v2 (batch)|1|300 s
|
||||
|WD v1.4 SwinV2 v2|1|302 s
|
||||
|WD v1.4 SwinV2 v2 (batch)|16|305 s
|
||||
|ML-Danbooru Caformer dec-5-97527|16|305 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|16|305 s
|
||||
|WD v1.4 MOAT v2 (batch)|4|307 s
|
||||
|WD v1.4 ViT v2|1|308 s
|
||||
|WD v1.4 ViT v2 (batch)|1|311 s
|
||||
@ -126,7 +137,7 @@ CPU inference
|
||||
|WD v1.4 MOAT v2|1|332 s
|
||||
|WD v1.4 MOAT v2 (batch)|16|335 s
|
||||
|WD v1.4 MOAT v2 (batch)|1|339 s
|
||||
|ML-Danbooru Caformer dec-5-97527|1|352 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|1|352 s
|
||||
|===
|
||||
|
||||
Model benchmarks (macOS)
|
||||
@ -166,12 +177,12 @@ GPU inference
|
||||
|WD v1.4 ConvNeXTV2 v2 (batch)|1|160 s
|
||||
|WD v1.4 MOAT v2 (batch)|1|165 s
|
||||
|WD v1.4 SwinV2 v2|1|166 s
|
||||
|ML-Danbooru Caformer dec-5-97527|1|263 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|1|263 s
|
||||
|WD v1.4 ConvNeXT v2|1|273 s
|
||||
|WD v1.4 MOAT v2|1|273 s
|
||||
|WD v1.4 ConvNeXTV2 v2|1|340 s
|
||||
|ML-Danbooru Caformer dec-5-97527|4|445 s
|
||||
|ML-Danbooru Caformer dec-5-97527|8|1790 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|4|445 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|8|1790 s
|
||||
|WD v1.4 MOAT v2 (batch)|4|kernel panic
|
||||
|===
|
||||
|
||||
@ -189,14 +200,14 @@ CPU inference
|
||||
|WD v1.4 SwinV2 v2 (batch)|1|98 s
|
||||
|ML-Danbooru TResNet-D 6-30000|4|99 s
|
||||
|WD v1.4 SwinV2 v2|1|99 s
|
||||
|ML-Danbooru Caformer dec-5-97527|4|110 s
|
||||
|ML-Danbooru Caformer dec-5-97527|8|110 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|4|110 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|8|110 s
|
||||
|WD v1.4 ViT v2 (batch)|4|111 s
|
||||
|WD v1.4 ViT v2 (batch)|8|111 s
|
||||
|WD v1.4 ViT v2 (batch)|1|113 s
|
||||
|WD v1.4 ViT v2|1|113 s
|
||||
|ML-Danbooru TResNet-D 6-30000|1|118 s
|
||||
|ML-Danbooru Caformer dec-5-97527|1|122 s
|
||||
|ML-Danbooru CAFormer dec-5-97527|1|122 s
|
||||
|WD v1.4 ConvNeXT v2 (batch)|8|124 s
|
||||
|WD v1.4 ConvNeXT v2 (batch)|4|125 s
|
||||
|WD v1.4 ConvNeXTV2 v2 (batch)|8|129 s
|
||||
|
@ -157,7 +157,7 @@ wd14 'WD v1.4 SwinV2 v2' 'SmilingWolf/wd-v1-4-swinv2-tagger-v2'
|
||||
wd14 'WD v1.4 MOAT v2' 'SmilingWolf/wd-v1-4-moat-tagger-v2'
|
||||
|
||||
# As suggested by author https://github.com/IrisRainbowNeko/ML-Danbooru-webui
|
||||
mldanbooru 'ML-Danbooru Caformer dec-5-97527' \
|
||||
mldanbooru 'ML-Danbooru CAFormer dec-5-97527' \
|
||||
448 'ml_caformer_m36_dec-5-97527.onnx'
|
||||
mldanbooru 'ML-Danbooru TResNet-D 6-30000' \
|
||||
640 'TResnet-D-FLq_ema_6-30000.onnx'
|
||||
|
Loading…
Reference in New Issue
Block a user