bfc/interpreters/bf-jit.c

328 lines
8.8 KiB
C

// This is an exercise in futility more than anything else
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#if (defined __x86_64__ || defined __amd64__) && defined __unix__
#include <sys/mman.h>
#else
#error Platform not supported
#endif
#define exit_fatal(...) \
do { \
fprintf (stderr, "fatal: " __VA_ARGS__); \
exit (EXIT_FAILURE); \
} while (0)
// --- Safe memory management --------------------------------------------------
static void *
xcalloc (size_t m, size_t n)
{
void *p = calloc (m, n);
if (!p)
exit_fatal ("calloc: %s\n", strerror (errno));
return p;
}
static void *
xrealloc (void *o, size_t n)
{
void *p = realloc (o, n);
if (!p && n)
exit_fatal ("realloc: %s\n", strerror (errno));
return p;
}
// --- Dynamically allocated strings -------------------------------------------
struct str
{
char *str; ///< String data, null terminated
size_t alloc; ///< How many bytes are allocated
size_t len; ///< How long the string actually is
};
static void
str_init (struct str *self)
{
self->len = 0;
self->str = xcalloc (1, (self->alloc = 16));
}
static void
str_ensure_space (struct str *self, size_t n)
{
// We allocate at least one more byte for the terminating null character
size_t new_alloc = self->alloc;
while (new_alloc <= self->len + n)
new_alloc <<= 1;
if (new_alloc != self->alloc)
self->str = xrealloc (self->str, (self->alloc = new_alloc));
}
static void
str_append_data (struct str *self, const void *data, size_t n)
{
str_ensure_space (self, n);
memcpy (self->str + self->len, data, n);
self->str[self->len += n] = '\0';
}
static void
str_append_c (struct str *self, char c)
{
str_append_data (self, &c, 1);
}
// --- Application -------------------------------------------------------------
struct str data; ///< Data tape
volatile size_t dataptr; ///< Current location on the tape
FILE *input; ///< User input
enum command { RIGHT, LEFT, INC, DEC, SET, IN, OUT, BEGIN, END };
bool grouped[] = { 1, 1, 1, 1, 1, 0, 0, 0, 0 };
struct instruction { enum command cmd; size_t arg; };
// - - Callbacks - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Some things I just really don't want to write in assembly even though it
// is effectively a big performance hit, eliminating the advantage of JIT
static void
right (size_t arg)
{
assert (SIZE_MAX - dataptr > arg);
dataptr += arg;
while (dataptr >= data.len)
str_append_c (&data, 0);
}
static void
left (size_t arg)
{
assert (dataptr >= arg);
dataptr -= arg;
}
static int
cin (void)
{
int c = fgetc (input);
assert (c != EOF);
return c;
}
// - - Main - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int
main (int argc, char *argv[])
{
(void) argc;
(void) argv;
struct str program;
str_init (&program);
int c;
while ((c = fgetc (stdin)) != EOF)
str_append_c (&program, c);
if (ferror (stdin))
exit_fatal ("can't read program\n");
if (!(input = fopen ("/dev/tty", "rb")))
exit_fatal ("can't open terminal for reading\n");
// - - Decode and group - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct instruction *parsed = xcalloc (sizeof *parsed, program.len);
size_t parsed_len = 0;
for (size_t i = 0; i < program.len; i++)
{
enum command cmd;
switch (program.str[i])
{
case '>': cmd = RIGHT; break;
case '<': cmd = LEFT; break;
case '+': cmd = INC; break;
case '-': cmd = DEC; break;
case '.': cmd = OUT; break;
case ',': cmd = IN; break;
case '[': cmd = BEGIN; break;
case ']': cmd = END; break;
default: continue;
}
if (!parsed_len || !grouped[cmd] || parsed[parsed_len - 1].cmd != cmd)
parsed_len++;
parsed[parsed_len - 1].cmd = cmd;
parsed[parsed_len - 1].arg++;
}
// - - Simple optimization pass - - - - - - - - - - - - - - - - - - - - - - - -
size_t in = 0, out = 0;
for (; in < parsed_len; in++, out++)
{
if (in + 2 < parsed_len
&& parsed[in ].cmd == BEGIN
&& parsed[in + 1].cmd == DEC && parsed[in + 1].arg == 1
&& parsed[in + 2].cmd == END)
{
parsed[out].cmd = SET;
parsed[out].arg = 0;
in += 2;
}
else if (out && parsed[out - 1].cmd == SET && parsed[in].cmd == INC)
parsed[--out].arg += parsed[in].arg;
else if (out != in)
parsed[out] = parsed[in];
}
parsed_len = out;
// - - Loop pairing - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
size_t nesting = 0;
size_t *stack = xcalloc (sizeof *stack, parsed_len);
for (size_t i = 0; i < parsed_len; i++)
{
switch (parsed[i].cmd)
{
case BEGIN:
stack[nesting++] = i;
break;
case END:
assert (nesting > 0);
--nesting;
parsed[stack[nesting]].arg = i + 1;
parsed[i].arg = stack[nesting] + 1;
default:
break;
}
}
free (stack);
assert (nesting == 0);
// - - JIT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Functions preserve the registers rbx, rsp, rbp, r12, r13, r14, and r15;
// while rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11 are scratch registers.
str_init (&program);
size_t *offsets = xcalloc (sizeof *offsets, parsed_len + 1);
#define CODE(x) { char t[] = x; str_append_data (&program, t, sizeof t - 1); }
#define WORD(x) { size_t t = (size_t)(x); str_append_data (&program, &t, 8); }
CODE ("\x49\xBD") WORD (&dataptr) // mov r13, qword "&dataptr"
CODE ("\x49\xBF") WORD (&data.str) // mov r15, qword "&data.str"
CODE ("\x4D\x8B\x37") // mov r14, qword [r15]
CODE ("\x30\xDB") // xor bl, bl
for (size_t i = 0; i < parsed_len; i++)
{
offsets[i] = program.len;
size_t arg = parsed[i].arg;
switch (parsed[i].cmd)
{
case RIGHT:
CODE ("\x41\x88\x1E") // mov [r14], bl
CODE ("\x48\xBF") WORD (arg) // mov rdi, "arg"
CODE ("\x48\xB8") WORD (right) // mov rax, "right"
CODE ("\xFF\xD0") // call rax
// The data could get reallocated, so reload the address
CODE ("\x4D\x8B\x37") // mov r14, qword [r15]
CODE ("\x4D\x03\x75\x00") // add r14, [r13]
CODE ("\x41\x8A\x1E") // mov bl, [r14]
break;
case LEFT:
CODE ("\x41\x88\x1E") // mov [r14], bl
CODE ("\x48\xBF") WORD (arg) // mov rdi, "arg"
CODE ("\x49\x29\xFE") // sub r14, rdi -- optimistic
CODE ("\x48\xB8") WORD (left) // mov rax, "left"
CODE ("\xFF\xD0") // call rax
CODE ("\x41\x8A\x1E") // mov bl, [r14]
break;
case INC:
CODE ("\x80\xC3") // add bl, "arg"
str_append_c (&program, arg);
break;
case DEC:
CODE ("\x80\xEB") // sub bl, "arg"
str_append_c (&program, arg);
break;
case SET:
CODE ("\xB3") // mov bl, "arg"
str_append_c (&program, arg);
break;
case OUT:
CODE ("\x48\x0F\xB6\xFB") // movzx rdi, bl
CODE ("\x48\xBE") WORD (stdout) // mov rsi, "stdout"
CODE ("\x48\xB8") WORD (fputc) // mov rax, "fputc"
CODE ("\xFF\xD0") // call rax
break;
case IN:
CODE ("\x48\xB8") WORD (cin) // mov rax, "cin"
CODE ("\xFF\xD0") // call rax
CODE ("\x88\xC3") // mov bl, al
break;
case BEGIN:
CODE ("\x84\xDB") // test bl, bl
CODE ("\x0F\x84\x00\x00\x00\x00") // jz "offsets[i]"
break;
case END:
CODE ("\x84\xDB") // test bl, bl
CODE ("\x0F\x85\x00\x00\x00\x00") // jnz "offsets[i]"
break;
}
}
// When there is a loop at the end we need to be able to jump past it
offsets[parsed_len] = program.len;
str_append_c (&program, '\xC3'); // ret
// Now that we know where each instruction is, fill in relative jumps
for (size_t i = 0; i < parsed_len; i++)
{
if (parsed[i].cmd != BEGIN && parsed[i].cmd != END)
continue;
size_t fixup = offsets[i] + 4;
*(int32_t *)(program.str + fixup) =
((intptr_t)(offsets[parsed[i].arg]) - (intptr_t)(fixup + 4));
}
free (offsets);
// - - Runtime - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Some systems may have W^X
void *executable = mmap (NULL, program.len, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (!executable)
exit_fatal ("mmap: %s\n", strerror (errno));
memcpy (executable, program.str, program.len);
if (mprotect (executable, program.len, PROT_READ | PROT_EXEC))
exit_fatal ("mprotect: %s\n", strerror (errno));
str_init (&data);
str_append_c (&data, 0);
((void (*) (void)) executable)();
return 0;
}