gdb-experiment.go: add DWARF debugging information

Now we can debug compiled Brainfuck!
This commit is contained in:
Přemysl Eric Janouch 2017-01-19 01:22:30 +01:00
parent 4efc032827
commit def3218714
Signed by: p
GPG Key ID: B715679E3A361BE6
3 changed files with 256 additions and 46 deletions

3
.gitignore vendored
View File

@ -1,6 +1,9 @@
a.out a.out
gdb-experiment
bfc-amd64-* bfc-amd64-*
ir-dump.txt
bfc.creator* bfc.creator*
bfc.config bfc.config
bfc.files bfc.files

View File

@ -35,6 +35,18 @@ When no input file is specified, standard input is used. Similarly, the default
output filename is `a.out`. After the compilation, the resulting file can be output filename is `a.out`. After the compilation, the resulting file can be
run on the target platform. run on the target platform.
gdb
---
You may have noticed the `gdb-experiment.go` file. It is a non-optimizing
version of the compiler targeting Linux only that adds DWARF debugging
information mapping code locations onto lines in the `ir-dump.txt` byproduct
output file. It's been rewritten in Go since managing all those binary buffers
required to build the symbol table proved to be too painful in C.
$ go run gdb-experiment.go [INPUT-FILE] [OUTPUT-FILE]
Use `break *0x4000b7` to get a breakpoint at the first Brainfuck instruction.
Contributing and Support Contributing and Support
------------------------ ------------------------
Use this project's GitHub to report any bugs, request features, or submit pull Use this project's GitHub to report any bugs, request features, or submit pull

View File

@ -1,14 +1,21 @@
// Non-optimizing Brainfuck compiler generating binaries for Linux on x86-64; // Non-optimizing Brainfuck compiler generating binaries for Linux on x86-64
// gofmt has been tried, with disappointing results // with debugging information mapping instructions onto an IR dump.
// gofmt has been tried, with disappointing results.
// codegen{} is also pretty ugly in the way it works but damn convenient.
package main package main
import ( import (
"encoding/binary"
"errors" "errors"
"fmt" "fmt"
"io/ioutil" "io/ioutil"
"log" "log"
"os" "os"
"strconv" "strconv"
// Let's not repeat all those constants here onstants
"debug/dwarf"
"debug/elf"
) )
const ( RIGHT = iota; LEFT; INC; DEC; IN; OUT; BEGIN; END ) const ( RIGHT = iota; LEFT; INC; DEC; IN; OUT; BEGIN; END )
@ -124,16 +131,15 @@ func le(unknown interface{}) []byte {
// Trying hard to avoid reflect.Value.Int/Uint // Trying hard to avoid reflect.Value.Int/Uint
formatted := fmt.Sprintf("%d", unknown) formatted := fmt.Sprintf("%d", unknown)
var v uint64 b := make([]byte, 8)
if unsigned, err := strconv.ParseUint(formatted, 10, 64); err == nil { if unsigned, err := strconv.ParseUint(formatted, 10, 64); err == nil {
v = unsigned binary.LittleEndian.PutUint64(b, unsigned)
} else if signed, err := strconv.ParseInt(formatted, 10, 64); err == nil { } else if signed, err := strconv.ParseInt(formatted, 10, 64); err == nil {
v = uint64(signed) binary.LittleEndian.PutUint64(b, uint64(signed))
} else { } else {
panic("cannot convert to number") panic("cannot convert to number")
} }
return []byte{byte(v), byte(v >> 8), byte(v >> 16), byte(v >> 24), return b
byte(v >> 32), byte(v >> 40), byte(v >> 48), byte(v >> 56)}
} }
func (a *codegen) append(v []byte) { a.buf = append(a.buf, v...) } func (a *codegen) append(v []byte) { a.buf = append(a.buf, v...) }
@ -154,8 +160,8 @@ const (
SYS_EXIT = 60 SYS_EXIT = 60
) )
func codegenAmd64(irb []instruction) []byte { func codegenAmd64(irb []instruction) (code []byte, offsets []int) {
offsets := make([]int, len(irb)+1) offsets = make([]int, len(irb)+1)
a := codegen{} a := codegen{}
a.code("\xB8").dd(ElfDataAddr) // mov rax, "ElfCodeAddr" a.code("\xB8").dd(ElfDataAddr) // mov rax, "ElfCodeAddr"
@ -268,7 +274,7 @@ func codegenAmd64(irb []instruction) []byte {
} }
copy(a.buf[fixup:], le(target - fixup - 4)[:4]) copy(a.buf[fixup:], le(target - fixup - 4)[:4])
} }
return a.buf return a.buf, offsets
} }
// --- Main -------------------------------------------------------------------- // --- Main --------------------------------------------------------------------
@ -301,55 +307,244 @@ func main() {
// ... various optimizations could be performed here if we give up brevity // ... various optimizations could be performed here if we give up brevity
pairLoops(irb) pairLoops(irb)
dump("ir-dump.txt", irb) dump("ir-dump.txt", irb)
code, offsets := codegenAmd64(irb)
code := codegenAmd64(irb) // - - ELF generation - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
a := codegen{}
// TODO: also use the constants in package "debug/elf" // Now that we know how long the machine code is, we can write the header.
// Note that for PIE we would need to depend on the dynamic linker, so no.
//
// Recommended reading:
// http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html
// man 5 elf
//
// In case of unexpected gdb problems, also see:
// DWARF4.pdf
// https://sourceware.org/elfutils/DwarfLint
// http://wiki.osdev.org/DWARF
const ( const (
ElfHeaderSize = 64 // size of the ELF header ElfHeaderSize = 64 // Size of the ELF header
ElfProgramEntrySize = 56 // size of a program header ElfProgramEntrySize = 56 // Size of a program header
ElfSectionEntrySize = 64 // size of a section header ElfSectionEntrySize = 64 // Size of a section header
ElfPrologSize = ElfHeaderSize + 2*ElfProgramEntrySize
) )
// ELF header // - - Program headers - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
a.code("\x7FELF\x02\x01\x01") // ELF, 64-bit, little endian, v1
// Unix System V ABI, v0, padding
a.code("\x00\x00" + "\x00\x00\x00\x00\x00\x00\x00")
a.dw(2).dw(62).dd(1) // executable, x86-64, v1
a.dq(ElfCodeAddr + ElfPrologSize) // entry point address
// We only append section headers with debugging info with DEBUG ph := codegen{}
a.dq(ElfHeaderSize).dq(0) // program, section header offset phCount := 2
a.dd(0) // no processor-specific flags
a.dw(ElfHeaderSize) // ELF header size codeOffset := ElfHeaderSize + phCount*ElfProgramEntrySize
a.dw(ElfProgramEntrySize).dw(2) // program hdr tbl entry size, count codeEndOffset := codeOffset + len(code)
a.dw(ElfSectionEntrySize).dw(0) // section hdr tbl entry size, count
a.dw(0) // no section index for strings
// Program header for code // Program header for code
// The entry point address seems to require alignment, so map start of file // The entry point address seems to require alignment, so map start of file
a.dd(1).dd(5) // PT_LOAD, PF_R | PF_X ph.dd(elf.PT_LOAD).dd(elf.PF_R | elf.PF_X)
a.dq(0) // offset within the file ph.dq(0) // Offset within the file
a.dq(ElfCodeAddr) // address in virtual memory ph.dq(ElfCodeAddr) // Address in virtual memory
a.dq(ElfCodeAddr) // address in physical memory ph.dq(ElfCodeAddr) // Address in physical memory
a.dq(ElfPrologSize + len(code)) // length within the file ph.dq(codeEndOffset) // Length within the file
a.dq(ElfPrologSize + len(code)) // length within memory ph.dq(codeEndOffset) // Length within memory
a.dq(4096) // segment alignment ph.dq(4096) // Segment alignment
// Program header for the tape // Program header for the tape
a.dd(1).dd(6) // PT_LOAD, PF_R | PF_W ph.dd(elf.PT_LOAD).dd(elf.PF_R | elf.PF_W)
a.dq(0) // offset within the file ph.dq(0) // Offset within the file
a.dq(ElfDataAddr) // address in virtual memory ph.dq(ElfDataAddr) // Address in virtual memory
a.dq(ElfDataAddr) // address in physical memory ph.dq(ElfDataAddr) // Address in physical memory
a.dq(0) // length within the file ph.dq(0) // Length within the file
a.dq(1 << 20) // one megabyte of memory ph.dq(1 << 20) // One megabyte of memory
a.dq(4096) // segment alignment ph.dq(4096) // Segment alignment
a.buf = append(a.buf, code...) // Now that the rigid part has been generated, we can append sections
if err = ioutil.WriteFile(outputPath, a.buf, 0777); err != nil { pieces := [][]byte{ph.buf, code}
position := codeEndOffset
// - - Sections - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sh := codegen{}
shCount := 0
// This section is created on the go as we need to name other sections
stringTable := codegen{}
// - - Text - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sh.dd(len(stringTable.buf)) // Index for the name of the section
stringTable.code(".text\x00")
sh.dd(elf.SHT_PROGBITS)
sh.dq(elf.SHF_ALLOC | elf.SHF_EXECINSTR)
sh.dq(ElfCodeAddr + codeOffset) // Memory address
sh.dq(codeOffset) // Byte offset
sh.dq(len(code) - codeOffset) // Byte size
sh.dd(0).dd(0) // No link, no info
sh.dq(0).dq(0) // No alignment, no entry size
shCount++
// - - Debug line - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
const (
opcodeBase = 13 // Offset by DWARF4 standard opcodes
lineBase = 0 // We don't need negative line indexes
lineRange = 2 // Either we advance a line or not (we always do)
)
// FIXME: we use db() a lot instead of a proper un/signed LEB128 encoder;
// that means that values > 127/63 or < 0 would break it;
// see Appendix C to DWARF4.pdf for an algorithm
lineProgram := codegen{}
// Extended opcode DW_LNE_set_address to reset the PC to the start of code
lineProgram.db(0).db(1 + 8).db(2).dq(ElfCodeAddr + codeOffset)
if len(irb) > 0 {
lineProgram.db(opcodeBase + offsets[0] * lineRange)
}
// The epilog, which is at the very end of the offset array, is included
for i := 1; i <= len(irb); i++ {
size := offsets[i] - offsets[i - 1]
lineProgram.db(opcodeBase + (1 - lineBase) + size * lineRange)
}
// Extended opcode DW_LNE_end_sequence is mandatory at the end
lineProgram.db(0).db(1).db(1)
lineHeader := codegen{}
lineHeader.db(1) // Minimum instruction length
lineHeader.db(1) // Maximum operations per instruction
lineHeader.db(1) // default_is_stmt
lineHeader.db(lineBase)
lineHeader.db(lineRange)
lineHeader.db(opcodeBase)
// Number of operands for all standard opcodes (1..opcodeBase-1)
opcodeLengths := []byte{0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1}
lineHeader.buf = append(lineHeader.buf, opcodeLengths...)
// include_directories []string \x00
lineHeader.db(0)
// file_names []struct{base string; dir u8; modified u8; length u8} \x00
lineHeader.code("ir-dump.txt\x00").db(0).db(0).db(0).db(0)
lineEntry := codegen{}
lineEntry.dw(4) // .debug_line version number
lineEntry.dd(len(lineHeader.buf))
lineEntry.buf = append(lineEntry.buf, lineHeader.buf...)
lineEntry.buf = append(lineEntry.buf, lineProgram.buf...)
debugLine := codegen{}
debugLine.dd(len(lineEntry.buf))
debugLine.buf = append(debugLine.buf, lineEntry.buf...)
sh.dd(len(stringTable.buf)) // Index for the name of the section
stringTable.code(".debug_line\x00")
sh.dd(elf.SHT_PROGBITS).dq(0).dq(0) // Type, no flags, no memory address
sh.dq(position) // Byte offset
sh.dq(len(debugLine.buf)) // Byte size
sh.dd(0).dd(0) // No link, no info
sh.dq(0).dq(0) // No alignment, no entry size
shCount++
pieces = append(pieces, debugLine.buf)
position += len(debugLine.buf)
// - - Debug abbreviations - - - - - - - - - - - - - - - - - - - - - - - - - - -
const (
formAddr = 0x01 // Pointer size
formSecOffset = 0x17 // DWARF size
)
debugAbbrev := codegen{}
debugAbbrev.db(1) // Our abbreviation code
debugAbbrev.db(dwarf.TagCompileUnit)
debugAbbrev.db(0) // DW_CHILDREN_no
debugAbbrev.db(dwarf.AttrLowpc).db(formAddr)
debugAbbrev.db(dwarf.AttrHighpc).db(formAddr)
debugAbbrev.db(dwarf.AttrStmtList).db(formSecOffset)
debugAbbrev.db(0).db(0) // End of attributes
debugAbbrev.db(0) // End of abbreviations
sh.dd(len(stringTable.buf)) // Index for the name of the section
stringTable.code(".debug_abbrev\x00")
sh.dd(elf.SHT_PROGBITS).dq(0).dq(0) // Type, no flags, no memory address
sh.dq(position) // Byte offset
sh.dq(len(debugAbbrev.buf)) // Byte size
sh.dd(0).dd(0) // No link, no info
sh.dq(0).dq(0) // No alignment, no entry size
shCount++
pieces = append(pieces, debugAbbrev.buf)
position += len(debugAbbrev.buf)
// - - Debug info - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
cuEntry := codegen{}
cuEntry.dw(4) // .debug_info version number
cuEntry.dd(0) // Offset into .debug_abbrev
cuEntry.db(8) // Pointer size
// Single compile unit as per .debug_abbrev
cuEntry.db(1)
cuEntry.dq(ElfCodeAddr + codeOffset)
cuEntry.dq(ElfCodeAddr + codeEndOffset)
cuEntry.dd(0)
debugInfo := codegen{}
debugInfo.dd(len(cuEntry.buf))
debugInfo.buf = append(debugInfo.buf, cuEntry.buf...)
sh.dd(len(stringTable.buf)) // Index for the name of the section
stringTable.code(".debug_info\x00")
sh.dd(elf.SHT_PROGBITS).dq(0).dq(0) // Type, no flags, no memory address
sh.dq(position) // Byte offset
sh.dq(len(debugInfo.buf)) // Byte size
sh.dd(0).dd(0) // No link, no info
sh.dq(0).dq(0) // No alignment, no entry size
shCount++
pieces = append(pieces, debugInfo.buf)
position += len(debugInfo.buf)
// - - Section names and section table - - - - - - - - - - - - - - - - - - - - -
sh.dd(len(stringTable.buf)) // Index for the name of the section
stringTable.code(".shstrtab\x00")
sh.dd(elf.SHT_STRTAB).dq(0).dq(0) // Type, no flags, no memory address
sh.dq(position) // Byte offset
sh.dq(len(stringTable.buf)) // Byte size
sh.dd(0).dd(0) // No link, no info
sh.dq(0).dq(0) // No alignment, no entry size
shCount++
pieces = append(pieces, stringTable.buf)
position += len(stringTable.buf)
pieces = append(pieces, sh.buf)
// Don't increment the position, we want to know where section headers start
// - - Final assembly of parts - - - - - - - - - - - - - - - - - - - - - - - - -
bin := codegen{}
// ELF header
bin.code("\x7FELF\x02\x01\x01") // ELF, 64-bit, little endian, v1
// Unix System V ABI, v0, padding
bin.code("\x00\x00" + "\x00\x00\x00\x00\x00\x00\x00")
bin.dw(elf.ET_EXEC).dw(elf.EM_X86_64).dd(elf.EV_CURRENT)
bin.dq(ElfCodeAddr + codeOffset) // Entry point address
bin.dq(ElfHeaderSize) // Program header offset
bin.dq(position) // Section header offset
bin.dd(0) // No processor-specific flags
bin.dw(ElfHeaderSize) // ELF header size
bin.dw(ElfProgramEntrySize) // Program header table entry size
bin.dw(phCount) // Program header table entry count
bin.dw(ElfSectionEntrySize) // Section header table entry size
bin.dw(shCount) // Section header table entry count
bin.dw(shCount - 1) // Section index for strings
for _, x := range pieces {
bin.buf = append(bin.buf, x...)
}
if err = ioutil.WriteFile(outputPath, bin.buf, 0777); err != nil {
log.Fatalf("%s", err) log.Fatalf("%s", err)
} }
} }