#!/usr/bin/tcc -run -lm // // ZyklonB scripting plugin, using a custom stack-based language // // Copyright 2014 Přemysl Janouch // See the file LICENSE for licensing information. // // Just compile this file as usual (sans #!) if you don't feel like using TCC. // It is a very basic and portable C99 application. It's not supposed to be // very sophisticated, for it'd get extremely big. // // The main influences of the language were Factor and Joy, stripped of all // even barely complex stuff. In its current state, it's only really useful as // a calculator but it's got great potential for extending. // // If you don't like something, just change it; this is just an experiment. // // NOTE: it is relatively easy to abuse. Be careful. // #define _XOPEN_SOURCE 500 #include #include #include #include #include #include #include #include #include #include #include #define ADDRESS_SPACE_LIMIT (100 * 1024 * 1024) #include #if defined __GNUC__ #define ATTRIBUTE_PRINTF(x, y) __attribute__ ((format (printf, x, y))) #else // ! __GNUC__ #define ATTRIBUTE_PRINTF(x, y) #endif // ! __GNUC__ #define N_ELEMENTS(a) (sizeof (a) / sizeof ((a)[0])) // --- Utilities --------------------------------------------------------------- static char *strdup_printf (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); static char * strdup_vprintf (const char *format, va_list ap) { va_list aq; va_copy (aq, ap); int size = vsnprintf (NULL, 0, format, aq); va_end (aq); if (size < 0) return NULL; char buf[size + 1]; size = vsnprintf (buf, sizeof buf, format, ap); if (size < 0) return NULL; return strdup (buf); } static char * strdup_printf (const char *format, ...) { va_list ap; va_start (ap, format); char *result = strdup_vprintf (format, ap); va_end (ap); return result; } // --- Generic buffer ---------------------------------------------------------- struct buffer { char *s; ///< Buffer data size_t alloc; ///< Number of bytes allocated size_t len; ///< Number of bytes used bool memory_failure; ///< Memory allocation failed }; #define BUFFER_INITIALIZER { NULL, 0, 0, false } static bool buffer_append (struct buffer *self, const void *s, size_t n) { if (self->memory_failure) return false; if (!self->s) self->s = malloc (self->alloc = 8); while (self->len + n > self->alloc) self->s = realloc (self->s, self->alloc <<= 1); if (!self->s) { self->memory_failure = true; return false; } memcpy (self->s + self->len, s, n); self->len += n; return true; } inline static bool buffer_append_c (struct buffer *self, char c) { return buffer_append (self, &c, 1); } // --- Data types -------------------------------------------------------------- enum item_type { ITEM_STRING, ITEM_WORD, ITEM_INTEGER, ITEM_FLOAT, ITEM_LIST }; struct item { #define ITEM_HEADER \ enum item_type type; /**< The type of this object */ \ struct item *next; /**< Next item on the list/stack */ ITEM_HEADER }; struct item_string { ITEM_HEADER size_t len; ///< Length of the string (sans '\0') char value[]; ///< The null-terminated string value }; #define get_string(item) \ (assert ((item)->type == ITEM_STRING), \ ((struct item_string *)(item))->value) /// It looks like a string but it doesn't quack like a string #define item_word item_string #define get_word(item) \ (assert ((item)->type == ITEM_WORD), \ ((struct item_word *)(item))->value) struct item_integer { ITEM_HEADER long long value; ///< The integer value }; #define get_integer(item) \ (assert ((item)->type == ITEM_INTEGER), \ ((struct item_integer *)(item))->value) struct item_float { ITEM_HEADER long double value; ///< The floating point value }; #define get_float(item) \ (assert ((item)->type == ITEM_FLOAT), \ ((struct item_float *)(item))->value) struct item_list { ITEM_HEADER struct item *head; ///< The head of the list }; #define get_list(item) \ (assert ((item)->type == ITEM_LIST), \ ((struct item_list *)(item))->head) #define set_list(item, head_) \ (assert ((item)->type == ITEM_LIST), \ item_free_list (((struct item_list *)(item))->head), \ ((struct item_list *)(item))->head = (head_)) const char * item_type_to_str (enum item_type type) { switch (type) { case ITEM_STRING: return "string"; case ITEM_WORD: return "word"; case ITEM_INTEGER: return "integer"; case ITEM_FLOAT: return "float"; case ITEM_LIST: return "list"; } abort (); } // --- Item management --------------------------------------------------------- static void item_free_list (struct item *); static struct item *new_clone_list (const struct item *); static void item_free (struct item *item) { if (item->type == ITEM_LIST) item_free_list (get_list (item)); free (item); } static void item_free_list (struct item *item) { while (item) { struct item *link = item; item = item->next; item_free (link); } } static struct item * new_clone (const struct item *item) { size_t size; switch (item->type) { case ITEM_STRING: case ITEM_WORD: { const struct item_string *x = (const struct item_string *) item; size = sizeof *x + x->len + 1; break; } case ITEM_INTEGER: size = sizeof (struct item_integer); break; case ITEM_FLOAT: size = sizeof (struct item_float); break; case ITEM_LIST: size = sizeof (struct item_list); break; } struct item *clone = malloc (size); if (!clone) return NULL; memcpy (clone, item, size); if (item->type == ITEM_LIST) { struct item_list *x = (struct item_list *) clone; if (x->head && !(x->head = new_clone_list (x->head))) { free (clone); return NULL; } } clone->next = NULL; return clone; } static struct item * new_clone_list (const struct item *item) { struct item *head = NULL, *clone; for (struct item **out = &head; item; item = item->next) { if (!(clone = *out = new_clone (item))) { item_free_list (head); return NULL; } clone->next = NULL; out = &clone->next; } return head; } static struct item * new_string (const char *s, ssize_t len) { if (len < 0) len = strlen (s); struct item_string *item = calloc (1, sizeof *item + len + 1); if (!item) return NULL; item->type = ITEM_STRING; item->len = len; memcpy (item->value, s, len); item->value[len] = '\0'; return (struct item *) item; } static struct item * new_word (const char *s, ssize_t len) { struct item *item = new_string (s, len); if (!item) return NULL; item->type = ITEM_WORD; return item; } static struct item * new_integer (long long value) { struct item_integer *item = calloc (1, sizeof *item); if (!item) return NULL; item->type = ITEM_INTEGER; item->value = value; return (struct item *) item; } static struct item * new_float (long double value) { struct item_float *item = calloc (1, sizeof *item); if (!item) return NULL; item->type = ITEM_FLOAT; item->value = value; return (struct item *) item; } static struct item * new_list (struct item *head) { struct item_list *item = calloc (1, sizeof *item); if (!item) return NULL; item->type = ITEM_LIST; item->head = head; return (struct item *) item; } // --- Parsing ----------------------------------------------------------------- #define PARSE_ERROR_TABLE(XX) \ XX( OK, NULL ) \ XX( EOF, "unexpected end of input" ) \ XX( INVALID_HEXA_ESCAPE, "invalid hexadecimal escape sequence" ) \ XX( INVALID_ESCAPE, "unrecognized escape sequence" ) \ XX( MEMORY, "memory allocation failure" ) \ XX( FLOAT_RANGE, "floating point value out of range" ) \ XX( INTEGER_RANGE, "integer out of range" ) \ XX( INVALID_INPUT, "invalid input" ) \ XX( UNEXPECTED_INPUT, "unexpected input" ) enum tokenizer_error { #define XX(x, y) PARSE_ERROR_ ## x, PARSE_ERROR_TABLE (XX) #undef XX PARSE_ERROR_COUNT }; struct tokenizer { const char *cursor; enum tokenizer_error error; }; static bool decode_hexa_escape (struct tokenizer *self, struct buffer *buf) { int i; char c, code = 0; for (i = 0; i < 2; i++) { c = tolower (*self->cursor); if (c >= '0' && c <= '9') code = (code << 4) | (c - '0'); else if (c >= 'a' && c <= 'f') code = (code << 4) | (c - 'a' + 10); else break; self->cursor++; } if (!i) return false; buffer_append_c (buf, code); return true; } static bool decode_octal_escape (struct tokenizer *self, struct buffer *buf) { int i; char c, code = 0; for (i = 0; i < 3; i++) { c = *self->cursor; if (c < '0' || c > '7') break; code = (code << 3) | (c - '0'); self->cursor++; } if (!i) return false; buffer_append_c (buf, code); return true; } static bool decode_escape_sequence (struct tokenizer *self, struct buffer *buf) { // Support some basic escape sequences from the C language char c; switch ((c = *self->cursor)) { case '\0': self->error = PARSE_ERROR_EOF; return false; case 'x': case 'X': self->cursor++; if (decode_hexa_escape (self, buf)) return true; self->error = PARSE_ERROR_INVALID_HEXA_ESCAPE; return false; default: if (decode_octal_escape (self, buf)) return true; self->cursor++; const char *from = "abfnrtv\"\\", *to = "\a\b\f\n\r\t\v\"\\", *x; if ((x = strchr (from, c))) { buffer_append_c (buf, to[x - from]); return true; } self->error = PARSE_ERROR_INVALID_ESCAPE; return false; } } static struct item * parse_string (struct tokenizer *self) { struct buffer buf = BUFFER_INITIALIZER; struct item *item = NULL; char c; while (true) switch ((c = *self->cursor++)) { case '\0': self->cursor--; self->error = PARSE_ERROR_EOF; goto end; case '"': if (buf.memory_failure || !(item = new_string (buf.s, buf.len))) self->error = PARSE_ERROR_MEMORY; goto end; case '\\': if (decode_escape_sequence (self, &buf)) break; goto end; default: buffer_append_c (&buf, c); } end: free (buf.s); return item; } static struct item * try_parse_number (struct tokenizer *self) { // These two standard library functions can digest a lot of various inputs, // including NaN and +/- infinity. That may get a bit confusing. char *float_end; errno = 0; long double float_value = strtold (self->cursor, &float_end); int float_errno = errno; char *int_end; errno = 0; long long int_value = strtoll (self->cursor, &int_end, 10); int int_errno = errno; // If they both fail, then this is most probably not a number. if (float_end == int_end && float_end == self->cursor) return NULL; // Only use the floating point result if it parses more characters: struct item *item; if (float_end > int_end) { if (float_errno == ERANGE) { self->error = PARSE_ERROR_FLOAT_RANGE; return NULL; } self->cursor = float_end; if (!(item = new_float (float_value))) self->error = PARSE_ERROR_MEMORY; return item; } else { if (int_errno == ERANGE) { self->error = PARSE_ERROR_INTEGER_RANGE; return NULL; } self->cursor = int_end; if (!(item = new_integer (int_value))) self->error = PARSE_ERROR_MEMORY; return item; } } static struct item * parse_word (struct tokenizer *self) { struct buffer buf = BUFFER_INITIALIZER; struct item *item = NULL; char c; // Here we accept almost anything that doesn't break the grammar while (!strchr (" []\"", (c = *self->cursor++)) && (unsigned char) c > ' ') buffer_append_c (&buf, c); self->cursor--; if (buf.memory_failure) self->error = PARSE_ERROR_MEMORY; else if (!buf.len) self->error = PARSE_ERROR_INVALID_INPUT; else if (!(item = new_word (buf.s, buf.len))) self->error = PARSE_ERROR_MEMORY; free (buf.s); return item; } static struct item *parse_item_list (struct tokenizer *); static struct item * parse_list (struct tokenizer *self) { struct item *list = parse_item_list (self); if (self->error) { assert (list == NULL); return NULL; } if (!*self->cursor) { self->error = PARSE_ERROR_EOF; item_free_list (list); return NULL; } assert (*self->cursor == ']'); self->cursor++; return new_list (list); } static struct item * parse_item (struct tokenizer *self) { char c; switch ((c = *self->cursor++)) { case '[': return parse_list (self); case '"': return parse_string (self); default:; } self->cursor--; struct item *item = try_parse_number (self); if (!item && !self->error) item = parse_word (self); return item; } static struct item * parse_item_list (struct tokenizer *self) { struct item *head = NULL; struct item **tail = &head; char c; bool expected = true; while ((c = *self->cursor) && c != ']') { if (isspace (c)) { self->cursor++; expected = true; continue; } else if (!expected) { self->error = PARSE_ERROR_UNEXPECTED_INPUT; goto fail; } if (!(*tail = parse_item (self))) goto fail; tail = &(*tail)->next; expected = false; } return head; fail: item_free_list (head); return NULL; } static struct item * parse (const char *s, const char **error) { struct tokenizer self = { .cursor = s, .error = PARSE_ERROR_OK }; struct item *list = parse_item_list (&self); if (!self.error && *self.cursor != '\0') { self.error = PARSE_ERROR_UNEXPECTED_INPUT; item_free_list (list); list = NULL; } #define XX(x, y) y, static const char *strings[PARSE_ERROR_COUNT] = { PARSE_ERROR_TABLE (XX) }; #undef XX static char error_buf[128]; if (self.error && error) { snprintf (error_buf, sizeof error_buf, "at character %d: %s", (int) (self.cursor - s) + 1, strings[self.error]); *error = error_buf; } return list; } // --- Runtime ----------------------------------------------------------------- // TODO: try to think of a _simple_ way to do preemptive multitasking struct context { struct item *stack; ///< The current top of the stack size_t stack_size; ///< Number of items on the stack size_t reduction_count; ///< # of function calls so far size_t reduction_limit; ///< The hard limit on function calls char *error; ///< Error information bool error_is_fatal; ///< Whether the error can be catched bool memory_failure; ///< Memory allocation failure void *user_data; ///< User data }; /// Internal handler for a function typedef bool (*handler_fn) (struct context *); struct fn { struct fn *next; ///< The next link in the chain handler_fn handler; ///< Internal C handler, or NULL struct item *script; ///< Alternatively runtime code char name[]; ///< The name of the function }; struct fn *g_functions; ///< Maps words to functions static void context_init (struct context *ctx) { ctx->stack = NULL; ctx->stack_size = 0; ctx->reduction_count = 0; ctx->reduction_limit = 2000; ctx->error = NULL; ctx->error_is_fatal = false; ctx->memory_failure = false; ctx->user_data = NULL; } static void context_free (struct context *ctx) { item_free_list (ctx->stack); ctx->stack = NULL; free (ctx->error); ctx->error = NULL; } static bool set_error (struct context *ctx, const char *format, ...) { free (ctx->error); va_list ap; va_start (ap, format); ctx->error = strdup_vprintf (format, ap); va_end (ap); if (!ctx->error) ctx->memory_failure = true; return false; } static bool push (struct context *ctx, struct item *item) { // The `item' is typically a result from new_(), thus when it is null, // that function must have failed. This is a shortcut for convenience. if (!item) { ctx->memory_failure = true; return false; } assert (item->next == NULL); item->next = ctx->stack; ctx->stack = item; ctx->stack_size++; return true; } static bool bump_reductions (struct context *ctx) { if (++ctx->reduction_count >= ctx->reduction_limit) { ctx->error_is_fatal = true; return set_error (ctx, "reduction limit reached"); } return true; } static bool execute (struct context *, struct item *); static bool call_function (struct context *ctx, const char *name) { struct fn *iter; for (iter = g_functions; iter; iter = iter->next) if (!strcmp (name, iter->name)) goto found; return set_error (ctx, "unknown function: %s", name); found: if (!bump_reductions (ctx)) return false; if (iter->handler ? iter->handler (ctx) : execute (ctx, iter->script)) return true; // In this case, `error' is NULL if (ctx->memory_failure) return false; // This creates some form of a stack trace char *tmp = ctx->error; ctx->error = NULL; set_error (ctx, "%s -> %s", name, tmp); free (tmp); return false; } static void free_function (struct fn *fn) { item_free_list (fn->script); free (fn); } static void unregister_function (const char *name) { for (struct fn **iter = &g_functions; *iter; iter = &(*iter)->next) if (!strcmp ((*iter)->name, name)) { struct fn *tmp = *iter; *iter = tmp->next; free_function (tmp); break; } } static struct fn * prepend_new_fn (const char *name) { struct fn *fn = calloc (1, sizeof *fn + strlen (name) + 1); if (!fn) return NULL; strcpy (fn->name, name); fn->next = g_functions; return g_functions = fn; } static bool register_handler (const char *name, handler_fn handler) { unregister_function (name); struct fn *fn = prepend_new_fn (name); if (!fn) return false; fn->handler = handler; return true; } static bool register_script (const char *name, struct item *script) { unregister_function (name); struct fn *fn = prepend_new_fn (name); if (!fn) return false; fn->script = script; return true; } static bool execute (struct context *ctx, struct item *script) { for (; script; script = script->next) { if (script->type != ITEM_WORD) { if (!bump_reductions (ctx) || !push (ctx, new_clone (script))) return false; } else if (!call_function (ctx, get_word (script))) return false; } return true; } // --- Runtime library --------------------------------------------------------- #define defn(name) static bool name (struct context *ctx) #define check_stack(n) \ if (ctx->stack_size < n) { \ set_error (ctx, "stack underflow"); \ return 0; \ } inline static bool check_stack_safe (struct context *ctx, size_t n) { check_stack (n); return true; } static bool check_type (struct context *ctx, const void *item_, enum item_type type) { const struct item *item = item_; if (item->type == type) return true; return set_error (ctx, "invalid type: expected `%s', got `%s'", item_type_to_str (type), item_type_to_str (item->type)); } static struct item * pop (struct context *ctx) { check_stack (1); struct item *top = ctx->stack; ctx->stack = top->next; top->next = NULL; ctx->stack_size--; return top; } // - - Types - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #define defn_is_type(name, item_type) \ defn (fn_is_##name) { \ check_stack (1); \ struct item *top = pop (ctx); \ push (ctx, new_integer (top->type == (item_type))); \ item_free (top); \ return true; \ } defn_is_type (string, ITEM_STRING) defn_is_type (word, ITEM_WORD) defn_is_type (integer, ITEM_INTEGER) defn_is_type (float, ITEM_FLOAT) defn_is_type (list, ITEM_LIST) defn (fn_to_string) { check_stack (1); struct item *item = pop (ctx); char *value; switch (item->type) { case ITEM_WORD: item->type = ITEM_STRING; case ITEM_STRING: return push (ctx, item); case ITEM_FLOAT: value = strdup_printf ("%Lf", get_float (item)); break; case ITEM_INTEGER: value = strdup_printf ("%lld", get_integer (item)); break; default: set_error (ctx, "cannot convert `%s' to `%s'", item_type_to_str (item->type), item_type_to_str (ITEM_STRING)); item_free (item); return false; } item_free (item); if (!value) { ctx->memory_failure = true; return false; } item = new_string (value, -1); free (value); return push (ctx, item); } defn (fn_to_integer) { check_stack (1); struct item *item = pop (ctx); long long value; switch (item->type) { case ITEM_INTEGER: return push (ctx, item); case ITEM_FLOAT: value = get_float (item); break; case ITEM_STRING: { char *end; const char *s = get_string (item); value = strtoll (s, &end, 10); if (end != s && *s == '\0') break; item_free (item); return set_error (ctx, "integer conversion error"); } default: set_error (ctx, "cannot convert `%s' to `%s'", item_type_to_str (item->type), item_type_to_str (ITEM_INTEGER)); item_free (item); return false; } item_free (item); return push (ctx, new_integer (value)); } defn (fn_to_float) { check_stack (1); struct item *item = pop (ctx); long double value; switch (item->type) { case ITEM_FLOAT: return push (ctx, item); case ITEM_INTEGER: value = get_integer (item); break; case ITEM_STRING: { char *end; const char *s = get_string (item); value = strtold (s, &end); if (end != s && *s == '\0') break; item_free (item); return set_error (ctx, "float conversion error"); } default: set_error (ctx, "cannot convert `%s' to `%s'", item_type_to_str (item->type), item_type_to_str (ITEM_FLOAT)); item_free (item); return false; } item_free (item); return push (ctx, new_float (value)); } // - - Miscellaneous - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - defn (fn_length) { check_stack (1); struct item *item = pop (ctx); bool success = true; switch (item->type) { case ITEM_STRING: success = push (ctx, new_integer (((struct item_string *) item)->len)); break; case ITEM_LIST: { long long length = 0; struct item *iter; for (iter = get_list (item); iter; iter = iter->next) length++; success = push (ctx, new_integer (length)); break; } default: success = set_error (ctx, "invalid type"); } item_free (item); return success; } // - - Stack operations - - - - - - - - - - - - - - - - - - - - - - - - - - - - defn (fn_dup) { check_stack (1); return push (ctx, new_clone (ctx->stack)); } defn (fn_drop) { check_stack (1); item_free (pop (ctx)); return true; } defn (fn_swap) { check_stack (2); struct item *second = pop (ctx), *first = pop (ctx); return push (ctx, second) && push (ctx, first); } defn (fn_call) { check_stack (1); struct item *script = pop (ctx); bool success = check_type (ctx, script, ITEM_LIST) && execute (ctx, get_list (script)); item_free (script); return success; } defn (fn_dip) { check_stack (2); struct item *script = pop (ctx); struct item *item = pop (ctx); bool success = check_type (ctx, script, ITEM_LIST) && execute (ctx, get_list (script)); item_free (script); if (!success) { item_free (item); return false; } return push (ctx, item); } defn (fn_unit) { check_stack (1); struct item *item = pop (ctx); return push (ctx, new_list (item)); } defn (fn_cons) { check_stack (2); struct item *list = pop (ctx); struct item *item = pop (ctx); if (!check_type (ctx, list, ITEM_LIST)) { item_free (list); item_free (item); return false; } item->next = get_list (list); ((struct item_list *) list)->head = item; return push (ctx, list); } defn (fn_cat) { check_stack (2); struct item *scnd = pop (ctx); struct item *frst = pop (ctx); if (!check_type (ctx, frst, ITEM_LIST) || !check_type (ctx, scnd, ITEM_LIST)) { item_free (frst); item_free (scnd); return false; } // XXX: we shouldn't have to do this in O(n) struct item **tail = &((struct item_list *) frst)->head; while (*tail) tail = &(*tail)->next; *tail = get_list (scnd); ((struct item_list *) scnd)->head = NULL; item_free (scnd); return push (ctx, frst); } defn (fn_uncons) { check_stack (1); struct item *list = pop (ctx); if (!check_type (ctx, list, ITEM_LIST)) goto fail; struct item *first = get_list (list); if (!first) { set_error (ctx, "list is empty"); goto fail; } ((struct item_list *) list)->head = first->next; first->next = NULL; return push (ctx, first) && push (ctx, list); fail: item_free (list); return false; } // - - Logical - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - static bool to_boolean (struct context *ctx, struct item *item, bool *ok) { switch (item->type) { case ITEM_STRING: return *get_string (item) != '\0'; case ITEM_INTEGER: return get_integer (item) != 0; case ITEM_FLOAT: return get_float (item) != 0.; default: return (*ok = set_error (ctx, "cannot convert `%s' to boolean", item_type_to_str (item->type))); } } defn (fn_not) { check_stack (1); struct item *item = pop (ctx); bool ok = true; bool result = !to_boolean (ctx, item, &ok); item_free (item); return ok && push (ctx, new_integer (result)); } defn (fn_and) { check_stack (2); struct item *op1 = pop (ctx); struct item *op2 = pop (ctx); bool ok = true; bool result = to_boolean (ctx, op1, &ok) && to_boolean (ctx, op2, &ok); item_free (op1); item_free (op2); return ok && push (ctx, new_integer (result)); } defn (fn_or) { check_stack (2); struct item *op1 = pop (ctx); struct item *op2 = pop (ctx); bool ok = true; bool result = to_boolean (ctx, op1, &ok) || !ok || to_boolean (ctx, op2, &ok); item_free (op1); item_free (op2); return ok && push (ctx, new_integer (result)); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - defn (fn_if) { check_stack (3); struct item *else_ = pop (ctx); struct item *then_ = pop (ctx); struct item *cond_ = pop (ctx); bool ok = true; bool condition = to_boolean (ctx, cond_, &ok); item_free (cond_); bool success = false; if (ok && check_type (ctx, then_, ITEM_LIST) && check_type (ctx, else_, ITEM_LIST)) success = execute (ctx, condition ? get_list (then_) : get_list (else_)); item_free (then_); item_free (else_); return success; } defn (fn_try) { check_stack (2); struct item *catch = pop (ctx); struct item *try = pop (ctx); bool success = false; if (!check_type (ctx, try, ITEM_LIST) || !check_type (ctx, catch, ITEM_LIST)) goto fail; if (!execute (ctx, get_list (try))) { if (ctx->memory_failure || ctx->error_is_fatal) goto fail; success = push (ctx, new_string (ctx->error, -1)); free (ctx->error); ctx->error = NULL; if (success) success = execute (ctx, get_list (catch)); } fail: item_free (try); item_free (catch); return success; } defn (fn_map) { check_stack (2); struct item *fn = pop (ctx); struct item *list = pop (ctx); if (!check_type (ctx, fn, ITEM_LIST) || !check_type (ctx, list, ITEM_LIST)) { item_free (fn); item_free (list); return false; } bool success = false; struct item *result = NULL, **tail = &result; for (struct item *iter = get_list (list); iter; iter = iter->next) { if (!push (ctx, new_clone (iter)) || !execute (ctx, get_list (fn)) || !check_stack_safe (ctx, 1)) goto fail; struct item *item = pop (ctx); *tail = item; tail = &item->next; } success = true; fail: set_list (list, result); item_free (fn); if (!success) { item_free (list); return false; } return push (ctx, list); } defn (fn_filter) { check_stack (2); struct item *fn = pop (ctx); struct item *list = pop (ctx); if (!check_type (ctx, fn, ITEM_LIST) || !check_type (ctx, list, ITEM_LIST)) { item_free (fn); item_free (list); return false; } bool success = false; bool ok = true; struct item *result = NULL, **tail = &result; for (struct item *iter = get_list (list); iter; iter = iter->next) { if (!push (ctx, new_clone (iter)) || !execute (ctx, get_list (fn)) || !check_stack_safe (ctx, 1)) goto fail; struct item *item = pop (ctx); bool survived = to_boolean (ctx, item, &ok); item_free (item); if (!ok) goto fail; if (!survived) continue; if (!(item = new_clone (iter))) goto fail; *tail = item; tail = &item->next; } success = true; fail: set_list (list, result); item_free (fn); if (!success) { item_free (list); return false; } return push (ctx, list); } defn (fn_fold) { check_stack (3); struct item *op = pop (ctx); struct item *null = pop (ctx); struct item *list = pop (ctx); bool success = false; if (!check_type (ctx, op, ITEM_LIST) || !check_type (ctx, list, ITEM_LIST)) { item_free (null); goto fail; } push (ctx, null); for (struct item *iter = get_list (list); iter; iter = iter->next) if (!push (ctx, new_clone (iter)) || !execute (ctx, get_list (op))) goto fail; success = true; fail: item_free (op); item_free (list); return success; } defn (fn_each) { check_stack (2); struct item *op = pop (ctx); struct item *list = pop (ctx); bool success = false; if (!check_type (ctx, op, ITEM_LIST) || !check_type (ctx, list, ITEM_LIST)) goto fail; for (struct item *iter = get_list (list); iter; iter = iter->next) if (!push (ctx, new_clone (iter)) || !execute (ctx, get_list (op))) goto fail; success = true; fail: item_free (op); item_free (list); return success; } // - - Arithmetic - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // XXX: why not a `struct item_string *` argument? static bool push_repeated_string (struct context *ctx, struct item *op1, struct item *op2) { struct item_string *string = (struct item_string *) op1; struct item_integer *repeat = (struct item_integer *) op2; assert (string->type == ITEM_STRING); assert (repeat->type == ITEM_INTEGER); if (repeat->value < 0) return set_error (ctx, "cannot multiply a string by a negative value"); char *buf = NULL; size_t len = string->len * repeat->value; if (len < string->len && repeat->value != 0) goto allocation_fail; buf = malloc (len); if (!buf) goto allocation_fail; for (size_t i = 0; i < len; i += string->len) memcpy (buf + i, string->value, string->len); struct item *item = new_string (buf, len); free (buf); return push (ctx, item); allocation_fail: ctx->memory_failure = true; return false; } defn (fn_times) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_integer (op1) * get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_integer (op1) * get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_float (op1) * get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (get_float (op1) * get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_STRING) ok = push_repeated_string (ctx, op2, op1); else if (op1->type == ITEM_STRING && op2->type == ITEM_INTEGER) ok = push_repeated_string (ctx, op1, op2); else ok = set_error (ctx, "cannot multiply `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } defn (fn_pow) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) // TODO: implement this properly, outputting an integer ok = push (ctx, new_float (powl (get_integer (op1), get_integer (op2)))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (powl (get_integer (op1), get_float (op2)))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (powl (get_float (op1), get_float (op2)))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (powl (get_float (op1), get_integer (op2)))); else ok = set_error (ctx, "cannot exponentiate `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } defn (fn_div) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) { if (get_integer (op2) == 0) ok = set_error (ctx, "division by zero"); else ok = push (ctx, new_integer (get_integer (op1) / get_integer (op2))); } else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_integer (op1) / get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_float (op1) / get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (get_float (op1) / get_integer (op2))); else ok = set_error (ctx, "cannot divide `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } defn (fn_mod) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) { if (get_integer (op2) == 0) ok = set_error (ctx, "division by zero"); else ok = push (ctx, new_integer (get_integer (op1) % get_integer (op2))); } else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (fmodl (get_integer (op1), get_float (op2)))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (fmodl (get_float (op1), get_float (op2)))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (fmodl (get_float (op1), get_integer (op2)))); else ok = set_error (ctx, "cannot divide `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } static bool push_concatenated_string (struct context *ctx, struct item *op1, struct item *op2) { struct item_string *s1 = (struct item_string *) op1; struct item_string *s2 = (struct item_string *) op2; assert (s1->type == ITEM_STRING); assert (s2->type == ITEM_STRING); char *buf = NULL; size_t len = s1->len + s2->len; if (len < s1->len || len < s2->len) goto allocation_fail; buf = malloc (len); if (!buf) goto allocation_fail; memcpy (buf, s1->value, s1->len); memcpy (buf + s1->len, s2->value, s2->len); struct item *item = new_string (buf, len); free (buf); return push (ctx, item); allocation_fail: ctx->memory_failure = true; return false; } defn (fn_plus) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_integer (op1) + get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_integer (op1) + get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_float (op1) + get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (get_float (op1) + get_integer (op2))); else if (op1->type == ITEM_STRING && op2->type == ITEM_STRING) ok = push_concatenated_string (ctx, op1, op2); else ok = set_error (ctx, "cannot add `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } defn (fn_minus) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_integer (op1) - get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_integer (op1) - get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_float (get_float (op1) - get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_float (get_float (op1) - get_integer (op2))); else ok = set_error (ctx, "cannot subtract `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } // - - Comparison - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - static int compare_strings (struct item_string *s1, struct item_string *s2) { // XXX: not entirely correct wrt. null bytes size_t len = (s1->len < s2->len ? s1->len : s2->len) + 1; return memcmp (s1->value, s2->value, len); } static bool compare_lists (struct item *, struct item *); static bool compare_list_items (struct item *op1, struct item *op2) { if (op1->type != op2->type) return false; switch (op1->type) { case ITEM_STRING: case ITEM_WORD: return !compare_strings ((struct item_string *) op1, (struct item_string *) op2); case ITEM_FLOAT: return get_float (op1) == get_float (op2); case ITEM_INTEGER: return get_integer (op1) == get_integer (op2); case ITEM_LIST: return compare_lists (get_list (op1), get_list (op2)); } abort (); } static bool compare_lists (struct item *op1, struct item *op2) { while (op1 && op2) { if (!compare_list_items (op1, op2)) return false; op1 = op1->next; op2 = op2->next; } return !op1 && !op2; } defn (fn_eq) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_integer (op1) == get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_integer (get_integer (op1) == get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_integer (get_float (op1) == get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_float (op1) == get_integer (op2))); else if (op1->type == ITEM_LIST && op2->type == ITEM_LIST) ok = push (ctx, new_integer (compare_lists (get_list (op1), get_list (op2)))); else if (op1->type == ITEM_STRING && op2->type == ITEM_STRING) ok = push (ctx, new_integer (compare_strings ((struct item_string *)(op1), (struct item_string *)(op2)) == 0)); else ok = set_error (ctx, "cannot compare `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } defn (fn_lt) { check_stack (2); struct item *op2 = pop (ctx); struct item *op1 = pop (ctx); bool ok; if (op1->type == ITEM_INTEGER && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_integer (op1) < get_integer (op2))); else if (op1->type == ITEM_INTEGER && op2->type == ITEM_FLOAT) ok = push (ctx, new_integer (get_integer (op1) < get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_FLOAT) ok = push (ctx, new_integer (get_float (op1) < get_float (op2))); else if (op1->type == ITEM_FLOAT && op2->type == ITEM_INTEGER) ok = push (ctx, new_integer (get_float (op1) < get_integer (op2))); else if (op1->type == ITEM_STRING && op2->type == ITEM_STRING) ok = push (ctx, new_integer (compare_strings ((struct item_string *)(op1), (struct item_string *)(op2)) < 0)); else ok = set_error (ctx, "cannot compare `%s' and `%s'", item_type_to_str (op1->type), item_type_to_str (op2->type)); item_free (op1); item_free (op2); return ok; } // - - Utilities - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - defn (fn_rand) { return push (ctx, new_float ((long double) rand () / ((long double) RAND_MAX + 1))); } defn (fn_time) { return push (ctx, new_integer (time (NULL))); } // XXX: this is a bit too constrained; combines strftime() with gmtime() defn (fn_strftime) { check_stack (2); struct item *format = pop (ctx); struct item *time_ = pop (ctx); bool success = false; if (!check_type (ctx, time_, ITEM_INTEGER) || !check_type (ctx, format, ITEM_STRING)) goto fail; if (get_integer (time_) < 0) { set_error (ctx, "invalid time value"); goto fail; } char buf[128]; time_t time__ = get_integer (time_); struct tm tm; gmtime_r (&time__, &tm); buf[strftime (buf, sizeof buf, get_string (format), &tm)] = '\0'; success = push (ctx, new_string (buf, -1)); fail: item_free (time_); item_free (format); return success; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - static void item_list_to_str (const struct item *, struct buffer *); static void string_to_str (const struct item_string *string, struct buffer *buf) { buffer_append_c (buf, '"'); for (size_t i = 0; i < string->len; i++) { char c = string->value[i]; if (c == '\n') buffer_append (buf, "\\n", 2); else if (c == '\r') buffer_append (buf, "\\r", 2); else if (c == '\t') buffer_append (buf, "\\t", 2); else if (!isprint (c)) { char tmp[8]; snprintf (tmp, sizeof tmp, "\\x%02x", (unsigned char) c); buffer_append (buf, tmp, strlen (tmp)); } else if (c == '\\') buffer_append (buf, "\\\\", 2); else if (c == '"') buffer_append (buf, "\\\"", 2); else buffer_append_c (buf, c); } buffer_append_c (buf, '"'); } static void item_to_str (const struct item *item, struct buffer *buf) { switch (item->type) { char *x; case ITEM_STRING: string_to_str ((struct item_string *) item, buf); break; case ITEM_WORD: { struct item_word *word = (struct item_word *) item; buffer_append (buf, word->value, word->len); break; } case ITEM_INTEGER: if (!(x = strdup_printf ("%lld", get_integer (item)))) goto alloc_failure; buffer_append (buf, x, strlen (x)); free (x); break; case ITEM_FLOAT: if (!(x = strdup_printf ("%Lf", get_float (item)))) goto alloc_failure; buffer_append (buf, x, strlen (x)); free (x); break; case ITEM_LIST: buffer_append_c (buf, '['); item_list_to_str (get_list (item), buf); buffer_append_c (buf, ']'); break; } return; alloc_failure: // This is a bit hackish but it simplifies stuff buf->memory_failure = true; free (buf->s); buf->s = NULL; } static void item_list_to_str (const struct item *script, struct buffer *buf) { if (!script) return; item_to_str (script, buf); while ((script = script->next)) { buffer_append_c (buf, ' '); item_to_str (script, buf); } } // --- IRC protocol ------------------------------------------------------------ struct message { char *prefix; ///< Message prefix char *command; ///< IRC command char *params[16]; ///< Command parameters (0-terminated) size_t n_params; ///< Number of parameters present }; inline static char * cut_word (char **s) { char *start = *s, *end = *s + strcspn (*s, " "); *s = end + strspn (end, " "); *end = '\0'; return start; } static bool parse_message (char *s, struct message *msg) { memset (msg, 0, sizeof *msg); // Ignore IRC 3.2 message tags, if present if (*s == '@') { s += strcspn (s, " "); s += strspn (s, " "); } // Prefix if (*s == ':') msg->prefix = cut_word (&s) + 1; // Command if (!*(msg->command = cut_word (&s))) return false; // Parameters while (*s) { size_t n = msg->n_params++; if (msg->n_params >= N_ELEMENTS (msg->params)) return false; if (*s == ':') { msg->params[n] = ++s; break; } msg->params[n] = cut_word (&s); } return true; } static struct message * read_message (void) { static bool discard = false; static char buf[1025]; static struct message msg; bool discard_this; do { if (!fgets (buf, sizeof buf, stdin)) return NULL; size_t len = strlen (buf); // Just to be on the safe side, if the line overflows our buffer, // ignore everything up until the next line. discard_this = discard; if (len >= 2 && !strcmp (buf + len - 2, "\r\n")) { buf[len -= 2] = '\0'; discard = false; } else discard = true; } // Invalid messages are silently ignored while (discard_this || !parse_message (buf, &msg)); return &msg; } // --- Interfacing with the bot ------------------------------------------------ #define BOT_PRINT "ZYKLONB print :script: " static const char * get_config (const char *key) { printf ("ZYKLONB get_config :%s\r\n", key); struct message *msg = read_message (); if (!msg || msg->n_params <= 0) exit (EXIT_FAILURE); return msg->params[0]; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // TODO: implement more functions; try to avoid writing them in C static bool init_runtime_library_scripts (void) { bool ok = true; // It's much cheaper (and more fun) to define functions in terms of other // ones. The "unit tests" serve a secondary purpose of showing the usage. struct script { const char *name; ///< Name of the function const char *definition; ///< The defining script const char *unit_test; ///< Trivial unit test, must return 1 } scripts[] = { { "nip", "swap drop", "1 2 nip 2 =" }, { "over", "[dup] dip swap", "1 2 over nip nip 1 =" }, { "swons", "swap cons", "[2] 1 swons [1 2] =" }, { "first", "uncons drop", "[1 2 3] first 1 =" }, { "rest", "uncons swap drop", "[1 2 3] rest [2 3] =" }, { "reverse", "[] swap [swap cons] each", "[1 2] reverse [2 1] =" }, { "curry", "cons", "1 2 [+] curry call 3 =" }, { "xor", "not swap not + 1 =", "1 1 xor 0 =" }, { "min", "over over < [drop] [nip] if", "1 2 min 1 =" }, { "max", "over over > [drop] [nip] if", "1 2 max 2 =" }, { "all?", "[and] cat 1 swap fold", "[3 4 5] [> 3] all? 0 =" }, { "any?", "[or] cat 0 swap fold", "[3 4 5] [> 3] any? 1 =" }, { ">", "swap <", "1 2 > 0 =" }, { "!=", "= not", "1 2 != 1 =" }, { "<=", "> not", "1 2 <= 1 =" }, { ">=", "< not", "1 2 >= 0 =" }, // XXX: this is a bit crazy and does not work with an empty list { "join", "[uncons] dip swap [[dup] dip swap [+ +] dip] each drop", "[1 2 3] [>string] map \" -> \" join \"1 -> 2 -> 3\" =" }, }; for (size_t i = 0; i < N_ELEMENTS (scripts); i++) { const char *error = NULL; struct item *script = parse (scripts[i].definition, &error); if (error) { printf (BOT_PRINT "error parsing internal script `%s': %s\r\n", scripts[i].definition, error); ok = false; } else ok &= register_script (scripts[i].name, script); } struct context ctx; for (size_t i = 0; i < N_ELEMENTS (scripts); i++) { const char *error = NULL; struct item *script = parse (scripts[i].unit_test, &error); if (error) { printf (BOT_PRINT "error parsing unit test for `%s': %s\r\n", scripts[i].name, error); ok = false; continue; } context_init (&ctx); execute (&ctx, script); item_free_list (script); const char *failure = NULL; if (ctx.memory_failure) failure = "memory allocation failure"; else if (ctx.error) failure = ctx.error; else if (ctx.stack_size != 1) failure = "too many results on the stack"; else if (ctx.stack->type != ITEM_INTEGER) failure = "result is not an integer"; else if (get_integer (ctx.stack) != 1) failure = "wrong test result"; if (failure) { printf (BOT_PRINT "error executing unit test for `%s': %s\r\n", scripts[i].name, failure); ok = false; } context_free (&ctx); } return ok; } static bool init_runtime_library (void) { bool ok = true; // Type detection ok &= register_handler ("string?", fn_is_string); ok &= register_handler ("word?", fn_is_word); ok &= register_handler ("integer?", fn_is_integer); ok &= register_handler ("float?", fn_is_float); ok &= register_handler ("list?", fn_is_list); // Type conversion ok &= register_handler (">string", fn_to_string); ok &= register_handler (">integer", fn_to_integer); ok &= register_handler (">float", fn_to_float); // Miscellaneous ok &= register_handler ("length", fn_length); // Basic stack manipulation ok &= register_handler ("dup", fn_dup); ok &= register_handler ("drop", fn_drop); ok &= register_handler ("swap", fn_swap); // Calling stuff ok &= register_handler ("call", fn_call); ok &= register_handler ("dip", fn_dip); // Control flow ok &= register_handler ("if", fn_if); ok &= register_handler ("try", fn_try); // List processing ok &= register_handler ("map", fn_map); ok &= register_handler ("filter", fn_filter); ok &= register_handler ("fold", fn_fold); ok &= register_handler ("each", fn_each); // List manipulation ok &= register_handler ("unit", fn_unit); ok &= register_handler ("cons", fn_cons); ok &= register_handler ("cat", fn_cat); ok &= register_handler ("uncons", fn_uncons); // Arithmetic operations ok &= register_handler ("+", fn_plus); ok &= register_handler ("-", fn_minus); ok &= register_handler ("*", fn_times); ok &= register_handler ("^", fn_pow); ok &= register_handler ("/", fn_div); ok &= register_handler ("%", fn_mod); // Comparison ok &= register_handler ("=", fn_eq); ok &= register_handler ("<", fn_lt); // Logical operations ok &= register_handler ("not", fn_not); ok &= register_handler ("and", fn_and); ok &= register_handler ("or", fn_or); // Utilities ok &= register_handler ("rand", fn_rand); ok &= register_handler ("time", fn_time); ok &= register_handler ("strftime", fn_strftime); ok &= init_runtime_library_scripts (); return ok; } static void free_runtime_library (void) { struct fn *next, *iter; for (iter = g_functions; iter; iter = next) { next = iter->next; free_function (iter); } } // --- Function database ------------------------------------------------------- // TODO: a global variable storing the various procedures (db) // XXX: defining procedures would ideally need some kind of an ACL static void read_db (void) { // TODO } static void write_db (void) { // TODO } // --- Main -------------------------------------------------------------------- static char *g_prefix; struct user_info { char *ctx; ///< Context: channel or user char *ctx_quote; ///< Reply quotation }; defn (fn_dot) { check_stack (1); struct item *item = pop (ctx); struct user_info *info = ctx->user_data; struct buffer buf = BUFFER_INITIALIZER; item_to_str (item, &buf); item_free (item); buffer_append_c (&buf, '\0'); if (buf.memory_failure) { ctx->memory_failure = true; return false; } if (buf.len > 255) buf.s[255] = '\0'; printf ("PRIVMSG %s :%s%s\r\n", info->ctx, info->ctx_quote, buf.s); free (buf.s); return true; } static void process_message (struct message *msg) { if (!msg->prefix || strcasecmp (msg->command, "PRIVMSG") || msg->n_params < 2) return; char *line = msg->params[1]; // Filter out only our commands size_t prefix_len = strlen (g_prefix); if (strncmp (line, g_prefix, prefix_len)) return; line += prefix_len; char *command = cut_word (&line); if (strcasecmp (command, "script")) return; // Retrieve information on how to respond back char *msg_ctx = msg->prefix, *x; if ((x = strchr (msg_ctx, '!'))) *x = '\0'; char *msg_ctx_quote; if (strchr ("#+&!", *msg->params[0])) { msg_ctx_quote = strdup_printf ("%s: ", msg_ctx); msg_ctx = msg->params[0]; } else msg_ctx_quote = strdup (""); if (!msg_ctx_quote) { printf (BOT_PRINT "%s\r\n", "memory allocation failure"); return; } struct user_info info; info.ctx = msg_ctx; info.ctx_quote = msg_ctx_quote; // Finally parse and execute the macro const char *error = NULL; struct item *script = parse (line, &error); if (error) { printf ("PRIVMSG %s :%s%s: %s\r\n", msg_ctx, msg_ctx_quote, "parse error", error); goto end; } struct context ctx; context_init (&ctx); ctx.user_data = &info; execute (&ctx, script); item_free_list (script); const char *failure = NULL; if (ctx.memory_failure) failure = "memory allocation failure"; else if (ctx.error) failure = ctx.error; if (failure) printf ("PRIVMSG %s :%s%s: %s\r\n", msg_ctx, msg_ctx_quote, "runtime error", failure); context_free (&ctx); end: free (msg_ctx_quote); } int main (int argc, char *argv[]) { freopen (NULL, "rb", stdin); setvbuf (stdin, NULL, _IOLBF, BUFSIZ); freopen (NULL, "wb", stdout); setvbuf (stdout, NULL, _IOLBF, BUFSIZ); struct rlimit limit = { .rlim_cur = ADDRESS_SPACE_LIMIT, .rlim_max = ADDRESS_SPACE_LIMIT }; // Lower the memory limits to something sensible to prevent abuse (void) setrlimit (RLIMIT_AS, &limit); read_db (); if (!init_runtime_library () || !register_handler (".", fn_dot)) printf (BOT_PRINT "%s\r\n", "runtime library initialization failed"); g_prefix = strdup (get_config ("prefix")); printf ("ZYKLONB register\r\n"); struct message *msg; while ((msg = read_message ())) process_message (msg); free_runtime_library (); free (g_prefix); return 0; }