Cleanup, improve communication while printing

This commit is contained in:
2019-04-12 23:10:42 +02:00
parent 4c2f29384d
commit 89fc9d86c7
6 changed files with 555 additions and 404 deletions

425
ql/ql.go
View File

@@ -8,54 +8,11 @@ package ql
// http://www.undocprint.org/formats/communication_protocols/ieee_1284
import (
"errors"
"fmt"
"image"
"io"
"log"
"os"
"path/filepath"
"regexp"
"strings"
"syscall"
"time"
"unsafe"
)
// #include <linux/ioctl.h>
import "C"
// -----------------------------------------------------------------------------
func _IOC(dir, typ, nr, size int) uintptr {
return (uintptr(dir) << C._IOC_DIRSHIFT) |
(uintptr(typ) << C._IOC_TYPESHIFT) |
(uintptr(nr) << C._IOC_NRSHIFT) |
(uintptr(size) << C._IOC_SIZESHIFT)
}
const (
iocnrGetDeviceID = 1
)
// lpiocGetDeviceID reads the IEEE-1284 Device ID string of a printer.
func lpiocGetDeviceID(fd uintptr) ([]byte, error) {
var buf [1024]byte
if _, _, err := syscall.Syscall(syscall.SYS_IOCTL, fd,
_IOC(C._IOC_READ, 'P', iocnrGetDeviceID, len(buf)),
uintptr(unsafe.Pointer(&buf))); err != 0 {
return nil, err
}
// In theory it might get trimmed along the way.
length := int(buf[0])<<8 | int(buf[1])
if 2+length > len(buf) {
return buf[2:], errors.New("the device ID string got trimmed")
}
return buf[2 : 2+length], nil
}
// -----------------------------------------------------------------------------
var deviceIDRegexp = regexp.MustCompile(
@@ -96,14 +53,6 @@ func (id deviceID) FindFirst(key, abbreviation string) string {
// -----------------------------------------------------------------------------
type Printer struct {
File *os.File
Manufacturer string
Model string
LastStatus *Status
MediaInfo *MediaInfo
}
func compatible(id deviceID) bool {
for _, commandSet := range id.Find("COMMAND SET", "CMD") {
if commandSet == "PT-CBP" {
@@ -113,118 +62,6 @@ func compatible(id deviceID) bool {
return false
}
// Open finds and initializes the first USB printer found supporting
// the appropriate protocol. Returns nil if no printer could be found.
func Open() (*Printer, error) {
// Linux usblp module, located in /drivers/usb/class/usblp.c
paths, err := filepath.Glob("/dev/usb/lp[0-9]*")
if err != nil {
return nil, err
}
for _, candidate := range paths {
f, err := os.OpenFile(candidate, os.O_RDWR, 0)
if err != nil {
continue
}
// Filter out obvious non-printers.
deviceID, err := lpiocGetDeviceID(f.Fd())
if err != nil {
f.Close()
continue
}
parsedID := parseIEEE1284DeviceID(deviceID)
// Filter out printers that wouldn't understand the protocol.
if !compatible(parsedID) {
f.Close()
continue
}
return &Printer{
File: f,
Manufacturer: parsedID.FindFirst("MANUFACTURER", "MFG"),
Model: parsedID.FindFirst("MODEL", "MDL"),
}, nil
}
return nil, nil
}
// Initialize initializes the printer for further operations.
func (p *Printer) Initialize() error {
// Clear the print buffer.
invalidate := make([]byte, 400)
if _, err := p.File.Write(invalidate); err != nil {
return err
}
// Initialize.
if _, err := p.File.WriteString("\x1b\x40"); err != nil {
return err
}
// Flush any former responses in the printer's queue.
//
// I'm not sure if this is necessary, or rather whether the kernel driver
// does any buffering that could cause data to be returned at this point.
/*
var dummy [32]byte
for {
if _, err := f.Read(dummy[:]); err == io.EOF {
break
}
}
*/
return nil
}
var errTimeout = errors.New("timeout")
var errInvalidRead = errors.New("invalid read")
// pollStatusBytes waits for the printer to send a status packet and returns
// it as raw data.
func (p *Printer) pollStatusBytes(
timeout time.Duration) (status [32]byte, err error) {
start, n := time.Now(), 0
for {
if n, err = p.File.Read(status[:]); err == io.EOF {
time.Sleep(10 * time.Millisecond)
} else if err != nil {
return status, err
} else if n < 32 {
return status, errInvalidRead
} else {
return status, nil
}
if time.Now().Sub(start) > timeout {
return status, errTimeout
}
}
}
// Request new status information from the printer. The printer
// must be in an appropriate mode, i.e. on-line and not currently printing.
func (p *Printer) UpdateStatus() error {
// Request status information.
if _, err := p.File.WriteString("\x1b\x69\x53"); err != nil {
return err
}
// Retrieve status information.
status, err := p.pollStatusBytes(time.Second)
if err != nil {
p.LastStatus = nil
return err
}
s := Status(status)
p.LastStatus = &s
return nil
}
// Close closes the underlying file.
func (p *Printer) Close() error {
return p.File.Close()
}
// -----------------------------------------------------------------------------
type mediaSize struct {
@@ -278,30 +115,35 @@ func GetMediaInfo(widthMM, lengthMM int) *MediaInfo {
// -----------------------------------------------------------------------------
const (
printBytes = 90
printPins = printBytes * 8
)
// makeBitmapData converts an image to the printer's raster format.
func makeBitmapData(src image.Image, offset, length int) (data []byte) {
func makeBitmapData(src image.Image, margin, length int) (data []byte) {
bounds := src.Bounds()
pixels := [720]bool{}
if bounds.Dy() > length {
bounds.Max.Y = bounds.Min.Y + length
}
if bounds.Dx() > printPins-margin {
bounds.Max.X = bounds.Min.X + printPins
}
pixels := [printPins]bool{}
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
length--
if length <= 0 {
break
}
off := offset
// The graphics needs to be inverted horizontally, iterating backwards.
offset := margin
for x := bounds.Max.X - 1; x >= bounds.Min.X; x-- {
if off >= len(pixels) {
break
}
// TODO: Anything to do with the ColorModel?
r, g, b, a := src.At(x, y).RGBA()
pixels[off] = r == 0 && g == 0 && b == 0 && a != 0
off++
pixels[offset] = r == 0 && g == 0 && b == 0 && a >= 0x8000
offset++
}
data = append(data, 'g', 0x00, 90)
for i := 0; i < 90; i++ {
data = append(data, 'g', 0x00, printBytes)
for i := 0; i < printBytes; i++ {
var b byte
for j := 0; j < 8; j++ {
b <<= 1
@@ -313,17 +155,20 @@ func makeBitmapData(src image.Image, offset, length int) (data []byte) {
}
}
for ; length > 0; length-- {
data = append(data, 'g', 0x00, 90)
data = append(data, make([]byte, 90)...)
data = append(data, 'g', 0x00, printBytes)
data = append(data, make([]byte, printBytes)...)
}
return
}
func (p *Printer) makePrintData(image image.Image) (data []byte) {
func makePrintData(status *Status, image image.Image) (data []byte) {
mediaInfo := GetMediaInfo(
p.LastStatus.MediaWidthMM(),
p.LastStatus.MediaLengthMM(),
status.MediaWidthMM(),
status.MediaLengthMM(),
)
if mediaInfo == nil {
return nil
}
// Raster mode.
// Should be the only supported mode for QL-800.
@@ -339,12 +184,12 @@ func (p *Printer) makePrintData(image image.Image) (data []byte) {
}
mediaType := byte(0x0a)
if p.LastStatus.MediaLengthMM() != 0 {
if status.MediaLengthMM() != 0 {
mediaType = byte(0x0b)
}
data = append(data, 0x1b, 0x69, 0x7a, 0x02|0x04|0x40|0x80, mediaType,
byte(p.LastStatus.MediaWidthMM()), byte(p.LastStatus.MediaLengthMM()),
byte(status.MediaWidthMM()), byte(status.MediaLengthMM()),
byte(dy), byte(dy>>8), byte(dy>>16), byte(dy>>24), 0, 0x00)
// Auto cut, each 1 label.
@@ -355,7 +200,7 @@ func (p *Printer) makePrintData(image image.Image) (data []byte) {
// Not sure what it means, doesn't seem to have any effect to turn it off.
data = append(data, 0x1b, 0x69, 0x4b, 0x08)
if p.LastStatus.MediaLengthMM() != 0 {
if status.MediaLengthMM() != 0 {
// 3mm margins along the direction of feed. 0x23 = 35 dots, the minimum.
data = append(data, 0x1b, 0x69, 0x64, 0x23, 0x00)
} else {
@@ -373,211 +218,3 @@ func (p *Printer) makePrintData(image image.Image) (data []byte) {
// Print command with feeding.
return append(data, 0x1a)
}
func (p *Printer) Print(image image.Image) error {
data := p.makePrintData(image)
// Print the prepared data.
if _, err := p.File.Write(data); err != nil {
return err
}
// TODO: We specifically need to wait for a transition to the receiving
// state, and try to figure out something from the statuses.
// We may also receive an error status instead of the transition to
// the printing state. Or even after it.
start, b := time.Now(), [32]byte{}
for {
if n, err := p.File.Read(b[:]); err == io.EOF {
time.Sleep(100 * time.Millisecond)
} else if err != nil {
return err
} else if n < 32 {
return errors.New("invalid read")
} else {
status := Status(b)
log.Printf("status\n%s", &status)
}
if time.Now().Sub(start) > 3*time.Second {
break
}
}
return nil
}
// -----------------------------------------------------------------------------
// Status is a decoder for the status packed returned by the printer.
type Status [32]byte
func (s *Status) MediaWidthMM() int { return int(s[10]) }
func (s *Status) MediaLengthMM() int { return int(s[17]) }
func decodeBitfieldErrors(b byte, errors [8]string) []string {
var result []string
for i := uint(0); i < 8; i++ {
if b&(1<<i) != 0 {
result = append(result, errors[i])
}
}
return result
}
func (s *Status) Errors() (errors []string) {
errors = append(errors, decodeBitfieldErrors(s[8], [8]string{
"no media", "end of media", "cutter jam", "?", "printer in use",
"printer turned off", "high-voltage adapter", "fan motor error"})...)
errors = append(errors, decodeBitfieldErrors(s[9], [8]string{
"replace media", "expansion buffer full", "communication error",
"communication buffer full", "cover open", "cancel key",
"media cannot be fed", "system error"})...)
return
}
// String implements the Stringer interface.
func (s *Status) String() string {
var b strings.Builder
s.Dump(&b)
return b.String()
}
// Dump writes the status data to an io.Writer in a human-readable format.
func (s *Status) Dump(f io.Writer) {
/*
if s[0] != 0x80 || s[1] != 0x20 || s[2] != 0x42 || s[3] != 0x34 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Model code.
switch m := s[4]; m {
case 0x38:
fmt.Fprintln(f, "model: QL-800")
case 0x39:
fmt.Fprintln(f, "model: QL-810W")
case 0x41:
fmt.Fprintln(f, "model: QL-820NWB")
case 0x43:
fmt.Fprintln(f, "model: QL-1100")
case 0x44:
fmt.Fprintln(f, "model: QL-1110NWB")
case 0x45:
fmt.Fprintln(f, "model: QL-1115NWB")
default:
fmt.Fprintln(f, "model:", m)
}
/*
// s[6] seems to be 0x00 in a real-world QL-800, as in QL-1100 docs.
if s[5] != 0x30 || s[6] != 0x30 || s[7] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Error information 1.
for _, e := range decodeBitfieldErrors(s[8], [8]string{
"no media", "end of media", "cutter jam", "?", "printer in use",
"printer turned off", "high-voltage adapter", "fan motor error"}) {
fmt.Fprintln(f, "error 1:", e)
}
// Error information 2.
for _, e := range decodeBitfieldErrors(s[9], [8]string{
"replace media", "expansion buffer full", "communication error",
"communication buffer full", "cover open", "cancel key",
"media cannot be fed", "system error"}) {
fmt.Fprintln(f, "error 2:", e)
}
// Media width.
fmt.Fprintln(f, "media width:", s[10], "mm")
// Media type.
switch t := s[11]; t {
case 0x00:
fmt.Fprintln(f, "media: no media")
case 0x4a, 0x0a: // 0x4a = J, in reality we get 0x0a, as in QL-1100 docs.
fmt.Fprintln(f, "media: continuous length tape")
case 0x4b, 0x0b: // 0x4b = K, in reality we get 0x0b, as in QL-1100 docs.
fmt.Fprintln(f, "media: die-cut labels")
default:
fmt.Fprintln(f, "media:", t)
}
/*
// In a real-world QL-800, s[14] seems to be:
// 0x01 with die-cut 29mm long labels,
// 0x14 with 29mm tape,
// 0x23 with red-black 62mm tape,
// and directly corresponds to physical pins on the tape.
if s[12] != 0x00 || s[13] != 0x00 || s[14] != 0x3f {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Mode.
fmt.Fprintln(f, "mode:", s[15])
/*
if s[16] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Media length.
fmt.Fprintln(f, "media length:", s[17], "mm")
// Status type.
switch t := s[18]; t {
case 0x00:
fmt.Fprintln(f, "status type: reply to status request")
case 0x01:
fmt.Fprintln(f, "status type: printing completed")
case 0x02:
fmt.Fprintln(f, "status type: error occurred")
case 0x04:
fmt.Fprintln(f, "status type: turned off")
case 0x05:
fmt.Fprintln(f, "status type: notification")
case 0x06:
fmt.Fprintln(f, "status type: phase change")
default:
fmt.Fprintln(f, "status type:", t)
}
// Phase type.
switch t := s[19]; t {
case 0x00:
fmt.Fprintln(f, "phase state: receiving state")
case 0x01:
fmt.Fprintln(f, "phase state: printing state")
default:
fmt.Fprintln(f, "phase state:", t)
}
// Phase number.
fmt.Fprintln(f, "phase number:", int(s[20])*256+int(s[21]))
// Notification number.
switch n := s[22]; n {
case 0x00:
fmt.Fprintln(f, "notification number: not available")
case 0x03:
fmt.Fprintln(f, "notification number: cooling (started)")
case 0x04:
fmt.Fprintln(f, "notification number: cooling (finished)")
default:
fmt.Fprintln(f, "notification number:", n)
}
/*
// In a real-world QL-800, s[25] seems to be:
// 0x01 with 29mm tape or die-cut 29mm long labels,
// 0x81 with red-black 62mm tape.
if s[23] != 0x00 || s[24] != 0x00 || s[25] != 0x00 || s[26] != 0x00 ||
s[27] != 0x00 || s[28] != 0x00 || s[29] != 0x00 || s[30] != 0x00 ||
s[31] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
}

212
ql/ql_linux.go Normal file
View File

@@ -0,0 +1,212 @@
package ql
import (
"errors"
"image"
"io"
"os"
"path/filepath"
"syscall"
"time"
"unsafe"
)
// #include <linux/ioctl.h>
import "C"
// -----------------------------------------------------------------------------
func _IOC(dir, typ, nr, size int) uintptr {
return (uintptr(dir) << C._IOC_DIRSHIFT) |
(uintptr(typ) << C._IOC_TYPESHIFT) |
(uintptr(nr) << C._IOC_NRSHIFT) |
(uintptr(size) << C._IOC_SIZESHIFT)
}
const (
iocnrGetDeviceID = 1
)
// lpiocGetDeviceID reads the IEEE-1284 Device ID string of a printer.
func lpiocGetDeviceID(fd uintptr) ([]byte, error) {
var buf [1024]byte
if _, _, err := syscall.Syscall(syscall.SYS_IOCTL, fd,
_IOC(C._IOC_READ, 'P', iocnrGetDeviceID, len(buf)),
uintptr(unsafe.Pointer(&buf))); err != 0 {
return nil, err
}
// In theory it might get trimmed along the way.
length := int(buf[0])<<8 | int(buf[1])
if 2+length > len(buf) {
return buf[2:], errors.New("the device ID string got trimmed")
}
return buf[2 : 2+length], nil
}
// -----------------------------------------------------------------------------
type Printer struct {
File *os.File
Manufacturer string
Model string
LastStatus *Status
MediaInfo *MediaInfo
// StatusNotify is called whenever we receive a status packet.
StatusNotify func(*Status)
}
// Open finds and initializes the first USB printer found supporting
// the appropriate protocol. Returns nil if no printer could be found.
func Open() (*Printer, error) {
// Linux usblp module, located in /drivers/usb/class/usblp.c
paths, err := filepath.Glob("/dev/usb/lp[0-9]*")
if err != nil {
return nil, err
}
for _, candidate := range paths {
f, err := os.OpenFile(candidate, os.O_RDWR, 0)
if err != nil {
continue
}
// Filter out obvious non-printers.
deviceID, err := lpiocGetDeviceID(f.Fd())
if err != nil {
f.Close()
continue
}
parsedID := parseIEEE1284DeviceID(deviceID)
// Filter out printers that wouldn't understand the protocol.
if !compatible(parsedID) {
f.Close()
continue
}
return &Printer{
File: f,
Manufacturer: parsedID.FindFirst("MANUFACTURER", "MFG"),
Model: parsedID.FindFirst("MODEL", "MDL"),
}, nil
}
return nil, nil
}
// Initialize initializes the printer for further operations.
func (p *Printer) Initialize() error {
// Clear the print buffer.
invalidate := make([]byte, 400)
if _, err := p.File.Write(invalidate); err != nil {
return err
}
// Initialize.
if _, err := p.File.WriteString("\x1b\x40"); err != nil {
return err
}
// Flush any former responses in the printer's queue.
//
// I'm not sure if this is necessary, or rather whether the kernel driver
// does any buffering that could cause data to be returned at this point.
/*
var dummy [32]byte
for {
if _, err := f.Read(dummy[:]); err == io.EOF {
break
}
}
*/
return nil
}
var errTimeout = errors.New("timeout")
var errInvalidRead = errors.New("invalid read")
func (p *Printer) updateStatus(status Status) {
p.LastStatus = &status
if p.StatusNotify != nil {
p.StatusNotify(p.LastStatus)
}
}
// pollStatusBytes waits for the printer to send a status packet and returns
// it as raw data.
func (p *Printer) pollStatusBytes(
timeout time.Duration) (*Status, error) {
start, buf := time.Now(), [32]byte{}
for {
if n, err := p.File.Read(buf[:]); err == io.EOF {
time.Sleep(10 * time.Millisecond)
} else if err != nil {
return nil, err
} else if n < 32 {
return nil, errInvalidRead
} else {
p.updateStatus(Status(buf))
return p.LastStatus, nil
}
if time.Now().Sub(start) > timeout {
return nil, errTimeout
}
}
}
// Request new status information from the printer. The printer
// must be in an appropriate mode, i.e. on-line and not currently printing.
func (p *Printer) UpdateStatus() error {
// Request status information.
if _, err := p.File.WriteString("\x1b\x69\x53"); err != nil {
return err
}
// Retrieve status information.
if _, err := p.pollStatusBytes(time.Second); err != nil {
p.LastStatus = nil
return err
}
return nil
}
var errErrorOccurred = errors.New("error occurred")
var errUnexpectedStatus = errors.New("unexpected status")
var errUnknownMedia = errors.New("unknown media")
func (p *Printer) Print(image image.Image) error {
data := makePrintData(p.LastStatus, image)
if data == nil {
return errUnknownMedia
}
if _, err := p.File.Write(data); err != nil {
return err
}
// See diagrams: we may receive an error status instead of the transition
// to the printing state. Or even after it.
//
// Not sure how exactly cooling behaves and I don't want to test it.
for {
status, err := p.pollStatusBytes(10 * time.Second)
if err != nil {
return err
}
switch status.Type() {
case StatusTypePhaseChange:
// Nothing to do.
case StatusTypePrintingCompleted:
return nil
case StatusTypeErrorOccurred:
return errErrorOccurred
default:
return errUnexpectedStatus
}
}
}
// Close closes the underlying file.
func (p *Printer) Close() error {
return p.File.Close()
}

206
ql/status.go Normal file
View File

@@ -0,0 +1,206 @@
package ql
import (
"fmt"
"io"
"strings"
)
// Status is a decoder for the status packed returned by the printer.
type Status [32]byte
func (s *Status) MediaWidthMM() int { return int(s[10]) }
func (s *Status) MediaLengthMM() int { return int(s[17]) }
type StatusType byte
const (
StatusTypeReplyToRequest StatusType = 0x00
StatusTypePrintingCompleted = 0x01
StatusTypeErrorOccurred = 0x02
StatusTypeTurnedOff = 0x04
StatusTypeNotification = 0x05
StatusTypePhaseChange = 0x06
)
func (s *Status) Type() StatusType { return StatusType(s[18]) }
type StatusPhase byte
const (
StatusPhaseReceiving StatusPhase = 0x00
StatusPhasePrinting = 0x01
)
func (s *Status) Phase() StatusPhase { return StatusPhase(s[19]) }
func decodeBitfieldErrors(b byte, errors [8]string) []string {
var result []string
for i := uint(0); i < 8; i++ {
if b&(1<<i) != 0 {
result = append(result, errors[i])
}
}
return result
}
func (s *Status) Errors() (errors []string) {
errors = append(errors, decodeBitfieldErrors(s[8], [8]string{
"no media", "end of media", "cutter jam", "?", "printer in use",
"printer turned off", "high-voltage adapter", "fan motor error"})...)
errors = append(errors, decodeBitfieldErrors(s[9], [8]string{
"replace media", "expansion buffer full", "communication error",
"communication buffer full", "cover open", "cancel key",
"media cannot be fed", "system error"})...)
return
}
// -----------------------------------------------------------------------------
// String implements the Stringer interface.
func (s *Status) String() string {
var b strings.Builder
s.Dump(&b)
return b.String()
}
// Dump writes the status data to an io.Writer in a human-readable format.
func (s *Status) Dump(f io.Writer) {
/*
if s[0] != 0x80 || s[1] != 0x20 || s[2] != 0x42 || s[3] != 0x34 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Model code.
switch m := s[4]; m {
case 0x38:
fmt.Fprintln(f, "model: QL-800")
case 0x39:
fmt.Fprintln(f, "model: QL-810W")
case 0x41:
fmt.Fprintln(f, "model: QL-820NWB")
case 0x43:
fmt.Fprintln(f, "model: QL-1100")
case 0x44:
fmt.Fprintln(f, "model: QL-1110NWB")
case 0x45:
fmt.Fprintln(f, "model: QL-1115NWB")
default:
fmt.Fprintln(f, "model:", m)
}
/*
// s[6] seems to be 0x00 in a real-world QL-800, as in QL-1100 docs.
if s[5] != 0x30 || s[6] != 0x30 || s[7] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Error information 1.
for _, e := range decodeBitfieldErrors(s[8], [8]string{
"no media", "end of media", "cutter jam", "?", "printer in use",
"printer turned off", "high-voltage adapter", "fan motor error"}) {
fmt.Fprintln(f, "error 1:", e)
}
// Error information 2.
for _, e := range decodeBitfieldErrors(s[9], [8]string{
"replace media", "expansion buffer full", "communication error",
"communication buffer full", "cover open", "cancel key",
"media cannot be fed", "system error"}) {
fmt.Fprintln(f, "error 2:", e)
}
// Media width.
fmt.Fprintln(f, "media width:", s[10], "mm")
// Media type.
switch t := s[11]; t {
case 0x00:
fmt.Fprintln(f, "media: no media")
case 0x4a, 0x0a: // 0x4a = J, in reality we get 0x0a, as in QL-1100 docs.
fmt.Fprintln(f, "media: continuous length tape")
case 0x4b, 0x0b: // 0x4b = K, in reality we get 0x0b, as in QL-1100 docs.
fmt.Fprintln(f, "media: die-cut labels")
default:
fmt.Fprintln(f, "media:", t)
}
/*
// In a real-world QL-800, s[14] seems to be:
// 0x01 with die-cut 29mm long labels,
// 0x14 with 29mm tape,
// 0x23 with red-black 62mm tape,
// and directly corresponds to physical pins on the tape.
if s[12] != 0x00 || s[13] != 0x00 || s[14] != 0x3f {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Mode.
fmt.Fprintln(f, "mode:", s[15])
/*
if s[16] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
// Media length.
fmt.Fprintln(f, "media length:", s[17], "mm")
// Status type.
switch t := s[18]; t {
case 0x00:
fmt.Fprintln(f, "status type: reply to status request")
case 0x01:
fmt.Fprintln(f, "status type: printing completed")
case 0x02:
fmt.Fprintln(f, "status type: error occurred")
case 0x04:
fmt.Fprintln(f, "status type: turned off")
case 0x05:
fmt.Fprintln(f, "status type: notification")
case 0x06:
fmt.Fprintln(f, "status type: phase change")
default:
fmt.Fprintln(f, "status type:", t)
}
// Phase type.
switch t := s[19]; t {
case 0x00:
fmt.Fprintln(f, "phase state: receiving state")
case 0x01:
fmt.Fprintln(f, "phase state: printing state")
default:
fmt.Fprintln(f, "phase state:", t)
}
// Phase number.
fmt.Fprintln(f, "phase number:", int(s[20])*256+int(s[21]))
// Notification number.
switch n := s[22]; n {
case 0x00:
fmt.Fprintln(f, "notification number: not available")
case 0x03:
fmt.Fprintln(f, "notification number: cooling (started)")
case 0x04:
fmt.Fprintln(f, "notification number: cooling (finished)")
default:
fmt.Fprintln(f, "notification number:", n)
}
/*
// In a real-world QL-800, s[25] seems to be:
// 0x01 with 29mm tape or die-cut 29mm long labels,
// 0x81 with red-black 62mm tape.
if s[23] != 0x00 || s[24] != 0x00 || s[25] != 0x00 || s[26] != 0x00 ||
s[27] != 0x00 || s[28] != 0x00 || s[29] != 0x00 || s[30] != 0x00 ||
s[31] != 0x00 {
fmt.Fprintln(f, "unexpected status fixed bytes")
}
*/
}