Add an optional spectrum visualiser

This is really more of a demo.  It's doable, just rather ugly.

It would deserve some further tuning, if anyone cared enough.
This commit is contained in:
Přemysl Eric Janouch 2021-07-03 23:58:05 +02:00
parent 120a11ca1b
commit a439a56ee9
Signed by: p
GPG Key ID: A0420B94F92B9493
5 changed files with 510 additions and 4 deletions

View File

@ -21,7 +21,6 @@ include (AddThreads)
find_package (Termo QUIET NO_MODULE) find_package (Termo QUIET NO_MODULE)
option (USE_SYSTEM_TERMO option (USE_SYSTEM_TERMO
"Don't compile our own termo library, use the system one" ${Termo_FOUND}) "Don't compile our own termo library, use the system one" ${Termo_FOUND})
if (USE_SYSTEM_TERMO) if (USE_SYSTEM_TERMO)
if (NOT Termo_FOUND) if (NOT Termo_FOUND)
message (FATAL_ERROR "System termo library not found") message (FATAL_ERROR "System termo library not found")
@ -38,9 +37,18 @@ else ()
set (Termo_LIBRARIES termo-static) set (Termo_LIBRARIES termo-static)
endif () endif ()
pkg_check_modules (fftw fftw3 fftw3f)
option (WITH_FFTW "Use FFTW to enable spectrum visualisation" ${fftw_FOUND})
if (WITH_FFTW)
if (NOT fftw_FOUND)
message (FATAL_ERROR "FFTW not found")
endif()
endif ()
include_directories (${Unistring_INCLUDE_DIRS} include_directories (${Unistring_INCLUDE_DIRS}
${Ncursesw_INCLUDE_DIRS} ${Termo_INCLUDE_DIRS} ${curl_INCLUDE_DIRS}) ${Ncursesw_INCLUDE_DIRS} ${Termo_INCLUDE_DIRS} ${curl_INCLUDE_DIRS}
link_directories (${curl_LIBRARY_DIRS}) ${fftw_INCLUDE_DIRS})
link_directories (${curl_LIBRARY_DIRS} ${fftw_LIBRARY_DIRS})
# Configuration # Configuration
include (CheckFunctionExists) include (CheckFunctionExists)
@ -53,6 +61,14 @@ if ("${CMAKE_SYSTEM_NAME}" MATCHES "BSD")
add_definitions (-D__BSD_VISIBLE=1 -D_BSD_SOURCE=1) add_definitions (-D__BSD_VISIBLE=1 -D_BSD_SOURCE=1)
endif () endif ()
# -lm may or may not be a part of libc
foreach (extra m)
find_library (extra_lib_${extra} ${extra})
if (extra_lib_${extra})
list (APPEND extra_libraries ${extra_lib_${extra}})
endif ()
endforeach ()
# Generate a configuration file # Generate a configuration file
configure_file (${PROJECT_SOURCE_DIR}/config.h.in configure_file (${PROJECT_SOURCE_DIR}/config.h.in
${PROJECT_BINARY_DIR}/config.h) ${PROJECT_BINARY_DIR}/config.h)
@ -61,7 +77,8 @@ include_directories (${PROJECT_SOURCE_DIR} ${PROJECT_BINARY_DIR})
# Build the main executable and link it # Build the main executable and link it
add_executable (${PROJECT_NAME} ${PROJECT_NAME}.c) add_executable (${PROJECT_NAME} ${PROJECT_NAME}.c)
target_link_libraries (${PROJECT_NAME} ${Unistring_LIBRARIES} target_link_libraries (${PROJECT_NAME} ${Unistring_LIBRARIES}
${Ncursesw_LIBRARIES} termo-static ${curl_LIBRARIES}) ${Ncursesw_LIBRARIES} termo-static ${curl_LIBRARIES}
${fftw_LIBRARIES} ${extra_libraries})
add_threads (${PROJECT_NAME}) add_threads (${PROJECT_NAME})
# Installation # Installation

2
NEWS
View File

@ -3,6 +3,8 @@
* Now requesting and processing terminal de/focus events, * Now requesting and processing terminal de/focus events,
using a new "defocused" attribute for selected rows using a new "defocused" attribute for selected rows
* Made it possible to show a spectrum visualiser when built against FFTW
1.0.0 (2020-11-05) 1.0.0 (2020-11-05)

View File

@ -5,6 +5,7 @@
#define PROGRAM_VERSION "${PROJECT_VERSION}" #define PROGRAM_VERSION "${PROJECT_VERSION}"
#cmakedefine HAVE_RESIZETERM #cmakedefine HAVE_RESIZETERM
#cmakedefine WITH_FFTW
#endif // ! CONFIG_H #endif // ! CONFIG_H

View File

@ -55,6 +55,7 @@ colors = {
odd = "" odd = ""
selection = "reverse" selection = "reverse"
multiselect = "-1 6" multiselect = "-1 6"
defocused = "ul"
scrollbar = "" scrollbar = ""
} }
streams = { streams = {
@ -70,6 +71,27 @@ schemes in the _contrib_ directory.
// TODO: it seems like liberty should contain an includable snippet about // TODO: it seems like liberty should contain an includable snippet about
// the format, which could form a part of nncmpp.conf(5). // the format, which could form a part of nncmpp.conf(5).
Spectrum visualiser
-------------------
When built against the FFTW library, *nncmpp* can make use of MPD's "fifo"
output plugin to show the audio spectrum. This has some caveats, namely that
it may not be properly synchronized, only one instance of a client can read from
a given named pipe at a time, it will cost you some CPU time, and finally you'll
need to set it up manually to match your MPD configuration, e.g.:
....
settings = {
...
spectrum_path = "~/.mpd/mpd.fifo" # "path"
spectrum_format = "44100:16:2" # "format" (samplerate:bits:channels)
spectrum_bars = 8 # beware of exponential complexity
...
}
....
The sample rate should be greater than 40 kHz, the number of bits 8 or 16,
and the number of channels doesn't matter, as they're simply averaged together.
Files Files
----- -----
*nncmpp* follows the XDG Base Directory Specification. *nncmpp* follows the XDG Base Directory Specification.

464
nncmpp.c
View File

@ -95,6 +95,13 @@ enum
#include <curl/curl.h> #include <curl/curl.h>
// The spectrum analyser requires a DFT transform. The FFTW library is fairly
// efficient, and doesn't have a requirement on the number of bins.
#ifdef WITH_FFTW
#include <fftw3.h>
#endif // WITH_FFTW
#define APP_TITLE PROGRAM_NAME ///< Left top corner #define APP_TITLE PROGRAM_NAME ///< Left top corner
// --- Utilities --------------------------------------------------------------- // --- Utilities ---------------------------------------------------------------
@ -560,6 +567,273 @@ item_list_resize (struct item_list *self, size_t len)
self->len = len; self->len = len;
} }
// --- Spectrum analyzer -------------------------------------------------------
#ifdef WITH_FFTW
struct spectrum
{
int sampling_rate; ///< Number of samples per seconds
int channels; ///< Number of sampled channels
int bits; ///< Number of bits per sample
int bars; ///< Number of output vertical bars
int bins; ///< Number of DFT bins
int useful_bins; ///< Bins up to the Nyquist frequency
int samples; ///< Number of windows to average
float accumulator_scale; ///< Scaling factor for accum. values
int *top_bins; ///< Top DFT bin index for each bar
char *spectrum; ///< String buffer for the "render"
void *buffer; ///< Input buffer
size_t buffer_len; ///< Input buffer fill level
size_t buffer_size; ///< Input buffer size
/// Decode the respective part of the buffer into the last 1/3 of data
void (*decode) (struct spectrum *, int sample);
float *data; ///< Normalized audio data
float *window; ///< Sampled window function
float *windowed; ///< data * window
fftwf_complex *out; ///< DFT output
fftwf_plan p; ///< DFT plan/FFTW configuration
float *accumulator; ///< Accumulated powers of samples
};
// - - Windows - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Out: float[n] of 0..1
static void
window_hann (float *coefficients, size_t n)
{
for (size_t i = 0; i < n; i++)
{
float sine = sin (M_PI * i / n);
coefficients[i] = sine * sine;
}
}
// In: float[n] of -1..1, float[n] of 0..1; out: float[n] of -1..1
static void
window_apply (const float *in, const float *coefficients, float *out, size_t n)
{
for (size_t i = 0; i < n; i++)
out[i] = in[i] * coefficients[i];
}
// In: float[n] of 0..1; out: float 0..n, describing the coherent gain
static float
window_coherent_gain (const float *in, size_t n)
{
float sum = 0;
for (size_t i = 0; i < n; i++)
sum += in[i];
return sum;
}
// - - Decoding - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
spectrum_decode_8 (struct spectrum *s, int sample)
{
size_t n = s->useful_bins;
float *data = s->data + n;
int8_t *p = (int8_t *) s->buffer + sample * n * s->channels;
while (n--)
{
int32_t acc = 0;
for (int ch = 0; ch < s->channels; ch++)
acc += *p++;
*data++ = (float) acc / -INT8_MIN / s->channels;
}
}
static void
spectrum_decode_16 (struct spectrum *s, int sample)
{
size_t n = s->useful_bins;
float *data = s->data + n;
int16_t *p = (int16_t *) s->buffer + sample * n * s->channels;
while (n--)
{
int32_t acc = 0;
for (int ch = 0; ch < s->channels; ch++)
acc += *p++;
*data++ = (float) acc / -INT16_MIN / s->channels;
}
}
// - - Spectrum analysis - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static const char *spectrum_bars[] =
{ " ", "", "", "", "", "", "", "", "" };
/// Assuming the input buffer is full, updates the rendered spectrum
static void
spectrum_sample (struct spectrum *s)
{
memset (s->accumulator, 0, sizeof *s->accumulator * s->useful_bins);
// Credit for the algorithm goes to Audacity's /src/SpectrumAnalyst.cpp,
// apparently Welch's method
for (int sample = 0; sample < s->samples; sample++)
{
// We use 50% overlap and start with data from the last run (if any)
memmove (s->data, s->data + s->useful_bins,
sizeof *s->data * s->useful_bins);
s->decode (s, sample);
window_apply (s->data, s->window, s->windowed, s->bins);
fftwf_execute (s->p);
for (int bin = 0; bin < s->useful_bins; bin++)
{
// out[0][0] is the DC component, not useful to us
float re = s->out[bin + 1][0];
float im = s->out[bin + 1][1];
s->accumulator[bin] += re * re + im * im;
}
}
int last_bin = 0;
char *p = s->spectrum;
for (int bar = 0; bar < s->bars; bar++)
{
int top_bin = s->top_bins[bar];
// Think of this as accumulating energies within bands,
// so that it matches our non-linear hearing--there's no averaging.
// For more precision, we could employ an "equal loudness contour".
float acc = 0;
for (int bin = last_bin; bin < top_bin; bin++)
acc += s->accumulator[bin];
last_bin = top_bin;
float db = 10 * log10f (acc * s->accumulator_scale);
if (db > 0)
db = 0;
// Assuming decibels are always negative (i.e., properly normalized).
// The division defines the cutoff: 9 * 7 = 63 dB of range.
int height = N_ELEMENTS (spectrum_bars) - 1 + (int) (db / 7);
p += strlen (strcpy (p, spectrum_bars[MAX (height, 0)]));
}
}
static bool
spectrum_init (struct spectrum *s, char *format, int bars, struct error **e)
{
errno = 0;
long sampling_rate, bits, channels;
if (!format
|| (sampling_rate = strtol (format, &format, 10), *format++ != ':')
|| (bits = strtol (format, &format, 10), *format++ != ':')
|| (channels = strtol (format, &format, 10), *format)
|| errno != 0)
return error_set (e, "invalid format, expected RATE:BITS:CHANNELS");
if (sampling_rate < 20000 || sampling_rate > INT_MAX)
return error_set (e, "unsupported sampling rate (%ld)", sampling_rate);
if (bits != 8 && bits != 16)
return error_set (e, "unsupported bit count (%ld)", bits);
if (channels < 1 || channels > INT_MAX)
return error_set (e, "no channels to sample (%ld)", channels);
if (bars < 1 || bars > 12)
return error_set (e, "requested too few or too many bars (%d)", bars);
// All that can fail henceforth is memory allocation
*s = (struct spectrum)
{
.sampling_rate = sampling_rate,
.bits = bits,
.channels = channels,
.bars = bars,
};
// The number of bars is always smaller than that of the samples (bins).
// Let's start with the equation of the top FFT bin to use for a given bar:
// top_bin = (num_bins + 1) ^ (bar / num_bars) - 1
// N.b. if we didn't subtract, the power function would make this ≥ 1.
// N.b. we then also need to extend the range by the same amount.
//
// We need the amount of bins for the first bar to be at least one:
// 1 ≤ (num_bins + 1) ^ (1 / num_bars) - 1
//
// Solving with Wolfram Alpha gives us:
// num_bins ≥ (2 ^ num_bars) - 1 [for y > 0]
//
// And we need to remember that half of the FFT bins are useless/missing--
// FFTW skips useless points past the Nyquist frequency.
int necessary_bins = 2 << s->bars;
// Discard frequencies above 20 kHz, which take up a constant ratio
// of all bins, given by the sampling rate. A more practical/efficient
// solution would be to just handle 96/192/... kHz as bitshifts.
//
// Trying to filter out sub-20 Hz frequencies would be even more wasteful.
double audible_ratio = s->sampling_rate / 2. / 20000;
s->bins = ceil (necessary_bins * MAX (audible_ratio, 1));
s->useful_bins = s->bins / 2;
int used_bins = necessary_bins / 2;
s->spectrum = xcalloc (sizeof *s->spectrum, s->bars * 3 + 1);
s->top_bins = xcalloc (sizeof *s->top_bins, s->bars);
for (int bar = 0; bar < s->bars; bar++)
{
int top_bin = floor (pow (used_bins + 1, (bar + 1.) / s->bars)) - 1;
s->top_bins[bar] = MIN (top_bin, used_bins);
}
// Limit updates to 30 times per second to limit CPU load
s->samples = s->sampling_rate / s->bins * 2 / 30;
if (s->samples < 1)
s->samples = 1;
if (s->bits == 8) s->decode = spectrum_decode_8;
if (s->bits == 16) s->decode = spectrum_decode_16;
s->buffer_size = s->samples * s->useful_bins * s->bits / 8 * s->channels;
s->buffer = xcalloc (1, s->buffer_size);
// Prepare the window
s->window = xcalloc (sizeof *s->window, s->bins);
window_hann (s->window, s->bins);
// Multiply by 2 for only using half of the DFT's result, then adjust to
// the total energy of the window. Both squared, because the accumulator
// contains squared values. Compute the average, and convert to decibels.
// See also the mildly confusing https://dsp.stackexchange.com/a/14945.
float coherent_gain = window_coherent_gain (s->window, s->bins);
s->accumulator_scale = 2 * 2 / coherent_gain / coherent_gain / s->samples;
s->data = xcalloc (sizeof *s->data, s->bins);
s->windowed = fftw_malloc (sizeof *s->windowed * s->bins);
s->out = fftw_malloc (sizeof *s->out * (s->useful_bins + 1));
s->p = fftwf_plan_dft_r2c_1d (s->bins, s->windowed, s->out, FFTW_MEASURE);
s->accumulator = xcalloc (sizeof *s->accumulator, s->useful_bins);
return true;
}
static void
spectrum_free (struct spectrum *s)
{
free (s->accumulator);
fftwf_destroy_plan (s->p);
fftw_free (s->out);
fftw_free (s->windowed);
free (s->data);
free (s->window);
free (s->spectrum);
free (s->top_bins);
free (s->buffer);
memset (s, 0, sizeof *s);
}
#endif // WITH_FFTW
// --- Application ------------------------------------------------------------- // --- Application -------------------------------------------------------------
// Function names are prefixed mostly because of curses which clutters the // Function names are prefixed mostly because of curses which clutters the
@ -675,6 +949,13 @@ static struct app_context
int gauge_offset; ///< Offset to the gauge or -1 int gauge_offset; ///< Offset to the gauge or -1
int gauge_width; ///< Width of the gauge, if present int gauge_width; ///< Width of the gauge, if present
#ifdef WITH_FFTW
struct spectrum spectrum; ///< Spectrum analyser
int spectrum_fd; ///< FIFO file descriptor (non-blocking)
int spectrum_column, spectrum_row; ///< Position for fast refresh
struct poller_fd spectrum_event; ///< FIFO watcher
#endif // WITH_FFTW
struct line_editor editor; ///< Line editor struct line_editor editor; ///< Line editor
struct poller_idle refresh_event; ///< Refresh the screen struct poller_idle refresh_event; ///< Refresh the screen
@ -750,6 +1031,22 @@ static struct config_schema g_config_settings[] =
.comment = "Where all the files MPD is playing are located", .comment = "Where all the files MPD is playing are located",
.type = CONFIG_ITEM_STRING }, .type = CONFIG_ITEM_STRING },
#ifdef WITH_FFTW
{ .name = "spectrum_path",
.comment = "Visualizer feed path to a FIFO audio output",
.type = CONFIG_ITEM_STRING },
// MPD's "outputs" command doesn't include this information
{ .name = "spectrum_format",
.comment = "Visualizer feed data format",
.type = CONFIG_ITEM_STRING,
.default_ = "\"44100:16:2\"" },
// 10 is about the useful limit, then it gets too computationally expensive
{ .name = "spectrum_bars",
.comment = "Number of computed audio spectrum bars",
.type = CONFIG_ITEM_INTEGER,
.default_ = "8" },
#endif // WITH_FFTW
// Disabling this minimises MPD traffic and has the following caveats: // Disabling this minimises MPD traffic and has the following caveats:
// - when MPD stalls on retrieving audio data, we keep ticking // - when MPD stalls on retrieving audio data, we keep ticking
// - when the "play" succeeds in ACTION_MPD_REPLACE for the same item as // - when the "play" succeeds in ACTION_MPD_REPLACE for the same item as
@ -904,6 +1201,11 @@ app_init_context (void)
g.playback_info = str_map_make (free); g.playback_info = str_map_make (free);
g.playback_info.key_xfrm = tolower_ascii_strxfrm; g.playback_info.key_xfrm = tolower_ascii_strxfrm;
#ifdef WITH_FFTW
g.spectrum_fd = -1;
g.spectrum_row = g.spectrum_column = -1;
#endif // WITH_FFTW
// This is also approximately what libunistring does internally, // This is also approximately what libunistring does internally,
// since the locale name is canonicalized by locale_charset(). // since the locale name is canonicalized by locale_charset().
// Note that non-Unicode locales are handled pretty inefficiently. // Note that non-Unicode locales are handled pretty inefficiently.
@ -957,6 +1259,15 @@ app_free_context (void)
strv_free (&g.streams); strv_free (&g.streams);
item_list_free (&g.playlist); item_list_free (&g.playlist);
#ifdef WITH_FFTW
spectrum_free (&g.spectrum);
if (g.spectrum_fd != -1)
{
poller_fd_reset (&g.spectrum_event);
xclose (g.spectrum_fd);
}
#endif // WITH_FFTW
line_editor_free (&g.editor); line_editor_free (&g.editor);
config_free (&g.config); config_free (&g.config);
@ -1218,6 +1529,21 @@ app_draw_header (void)
g.tabs_offset = g.header_height; g.tabs_offset = g.header_height;
LIST_FOR_EACH (struct tab, iter, g.tabs) LIST_FOR_EACH (struct tab, iter, g.tabs)
row_buffer_append (&buf, iter->name, attrs[iter == g.active_tab]); row_buffer_append (&buf, iter->name, attrs[iter == g.active_tab]);
#ifdef WITH_FFTW
// This seems like the most reasonable, otherwise unoccupied space
if (g.spectrum_fd != -1)
{
// Find some space and remember where it was, for fast refreshes
row_buffer_ellipsis (&buf, COLS - g.spectrum.bars - 1);
row_buffer_align (&buf, COLS - g.spectrum.bars, attrs[false]);
g.spectrum_row = g.header_height;
g.spectrum_column = buf.total_width;
row_buffer_append (&buf, g.spectrum.spectrum, attrs[false]);
}
#endif // WITH_FFTW
app_flush_header (&buf, attrs[false]); app_flush_header (&buf, attrs[false]);
const char *header = g.active_tab->header; const char *header = g.active_tab->header;
@ -3421,6 +3747,137 @@ debug_tab_init (void)
return super; return super;
} }
// --- Spectrum analyser -------------------------------------------------------
#ifdef WITH_FFTW
static void
spectrum_redraw (void)
{
// A full refresh would be too computationally expensive,
// let's hack around it in this case
if (g.spectrum_row != -1)
{
attrset (APP_ATTR (TAB_BAR));
mvaddstr (g.spectrum_row, g.spectrum_column, g.spectrum.spectrum);
attrset (0);
refresh ();
}
else
app_invalidate ();
}
// When any problem occurs with the FIFO, we'll just give up on it completely
static void
spectrum_discard_fifo (void)
{
if (g.spectrum_fd != -1)
{
poller_fd_reset (&g.spectrum_event);
xclose (g.spectrum_fd);
g.spectrum_fd = -1;
spectrum_free (&g.spectrum);
g.spectrum_row = g.spectrum_column = -1;
app_invalidate ();
}
}
static void
spectrum_on_fifo_readable (const struct pollfd *pfd, void *user_data)
{
(void) user_data;
struct spectrum *s = &g.spectrum;
bool update = false;
ssize_t n;
restart:
while ((n = read (pfd->fd,
s->buffer + s->buffer_len, s->buffer_size - s->buffer_len)) > 0)
if ((s->buffer_len += n) == s->buffer_size)
{
update = true;
spectrum_sample (s);
s->buffer_len = 0;
}
if (!n)
spectrum_discard_fifo ();
else if (errno == EINTR)
goto restart;
else if (errno != EAGAIN)
{
print_error ("spectrum: %s", strerror (errno));
spectrum_discard_fifo ();
}
else if (update)
spectrum_redraw ();
}
// When playback is stopped, we need to feed the analyser some zeroes ourselves.
// We could also just hide it. Hard to say which is simpler or better.
static void
spectrum_clear (void)
{
if (g.spectrum_fd != -1)
{
struct spectrum *s = &g.spectrum;
memset (s->buffer, 0, s->buffer_size);
spectrum_sample (s);
spectrum_sample (s);
s->buffer_len = 0;
spectrum_redraw ();
}
}
static void
spectrum_setup_fifo (void)
{
const char *spectrum_path =
get_config_string (g.config.root, "settings.spectrum_path");
const char *spectrum_format =
get_config_string (g.config.root, "settings.spectrum_format");
struct config_item *spectrum_bars =
config_item_get (g.config.root, "settings.spectrum_bars", NULL);
if (!spectrum_path)
return;
struct error *e = NULL;
char *path = resolve_filename
(spectrum_path, resolve_relative_config_filename);
if (!path)
print_error ("spectrum: %s", "FIFO path could not be resolved");
else if (!g.locale_is_utf8)
print_error ("spectrum: %s", "UTF-8 locale required");
else if (!spectrum_init (&g.spectrum,
(char *) spectrum_format, spectrum_bars->value.integer, &e))
{
print_error ("spectrum: %s", e->message);
error_free (e);
}
else if ((g.spectrum_fd = open (path, O_RDONLY | O_NONBLOCK)) == -1)
{
print_error ("spectrum: %s: %s", path, strerror (errno));
spectrum_free (&g.spectrum);
}
else
{
g.spectrum_event = poller_fd_make (&g.poller, g.spectrum_fd);
g.spectrum_event.dispatcher = spectrum_on_fifo_readable;
poller_fd_set (&g.spectrum_event, POLLIN);
}
free (path);
}
#else // ! WITH_FFTW
#define spectrum_setup_fifo()
#define spectrum_clear()
#define spectrum_discard_fifo()
#endif // ! WITH_FFTW
// --- MPD interface ----------------------------------------------------------- // --- MPD interface -----------------------------------------------------------
static void static void
@ -3482,6 +3939,9 @@ mpd_update_playback_state (void)
if (!strcmp (state, "pause")) g.state = PLAYER_PAUSED; if (!strcmp (state, "pause")) g.state = PLAYER_PAUSED;
} }
if (g.state == PLAYER_STOPPED)
spectrum_clear ();
// Values in "time" are always rounded. "elapsed", introduced in MPD 0.16, // Values in "time" are always rounded. "elapsed", introduced in MPD 0.16,
// is in millisecond precision and "duration" as well, starting with 0.20. // is in millisecond precision and "duration" as well, starting with 0.20.
// Prefer the more precise values but use what we have. // Prefer the more precise values but use what we have.
@ -3736,6 +4196,8 @@ mpd_on_connected (void *user_data)
mpd_request_info (); mpd_request_info ();
library_tab_reload (NULL); library_tab_reload (NULL);
} }
spectrum_setup_fifo ();
} }
static void static void
@ -3752,6 +4214,8 @@ mpd_on_failure (void *user_data)
mpd_update_playback_state (); mpd_update_playback_state ();
current_tab_update (); current_tab_update ();
info_tab_update (); info_tab_update ();
spectrum_discard_fifo ();
} }
static void static void