liberty/liberty.c

2832 lines
68 KiB
C

/*
* liberty.c: the ultimate C unlibrary
*
* Copyright (c) 2014 - 2015, Přemysl Janouch <p.janouch@gmail.com>
* All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#define _POSIX_C_SOURCE 199309L
#define _XOPEN_SOURCE 600
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdbool.h>
#include <ctype.h>
#include <time.h>
#include <limits.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <strings.h>
#include <regex.h>
#include <libgen.h>
#include <syslog.h>
#include <fnmatch.h>
#include <iconv.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>
#ifndef NI_MAXHOST
#define NI_MAXHOST 1025
#endif // ! NI_MAXHOST
#ifndef NI_MAXSERV
#define NI_MAXSERV 32
#endif // ! NI_MAXSERV
#ifdef LIBERTY_WANT_SSL
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#endif // LIBERTY_WANT_SSL
#include <getopt.h>
#include "siphash.c"
extern char **environ;
#ifdef _POSIX_MONOTONIC_CLOCK
#define CLOCK_BEST CLOCK_MONOTONIC
#else // ! _POSIX_MONOTIC_CLOCK
#define CLOCK_BEST CLOCK_REALTIME
#endif // ! _POSIX_MONOTONIC_CLOCK
#if defined __GNUC__
#define ATTRIBUTE_PRINTF(x, y) __attribute__ ((format (printf, x, y)))
#else // ! __GNUC__
#define ATTRIBUTE_PRINTF(x, y)
#endif // ! __GNUC__
#if defined __GNUC__ && __GNUC__ >= 4
#define ATTRIBUTE_SENTINEL __attribute__ ((sentinel))
#else // ! __GNUC__ || __GNUC__ < 4
#define ATTRIBUTE_SENTINEL
#endif // ! __GNUC__ || __GNUC__ < 4
#define N_ELEMENTS(a) (sizeof (a) / sizeof ((a)[0]))
#define BLOCK_START do {
#define BLOCK_END } while (0)
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define STRINGIFY(x) #x
#define XSTRINGIFY(x) STRINGIFY (x)
// --- Logging -----------------------------------------------------------------
static void
log_message_stdio (void *user_data, const char *quote, const char *fmt,
va_list ap)
{
(void) user_data;
FILE *stream = stderr;
fputs (quote, stream);
vfprintf (stream, fmt, ap);
fputs ("\n", stream);
}
static void (*g_log_message_real) (void *, const char *, const char *, va_list)
= log_message_stdio;
static void
log_message (void *user_data, const char *quote, const char *fmt, ...)
ATTRIBUTE_PRINTF (3, 4);
static void
log_message (void *user_data, const char *quote, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
g_log_message_real (user_data, quote, fmt, ap);
va_end (ap);
}
// `fatal' is reserved for unexpected failures that would harm further operation
#ifndef print_fatal_data
#define print_fatal_data NULL
#endif
#ifndef print_error_data
#define print_error_data NULL
#endif
#ifndef print_warning_data
#define print_warning_data NULL
#endif
#ifndef print_status_data
#define print_status_data NULL
#endif
#define print_fatal(...) \
log_message (print_fatal_data, "fatal: ", __VA_ARGS__)
#define print_error(...) \
log_message (print_error_data, "error: ", __VA_ARGS__)
#define print_warning(...) \
log_message (print_warning_data, "warning: ", __VA_ARGS__)
#define print_status(...) \
log_message (print_status_data, "-- ", __VA_ARGS__)
#define exit_fatal(...) \
BLOCK_START \
print_fatal (__VA_ARGS__); \
exit (EXIT_FAILURE); \
BLOCK_END
// --- Debugging and assertions ------------------------------------------------
// We should check everything that may possibly fail with at least a soft
// assertion, so that any causes for problems don't slip us by silently.
//
// `g_soft_asserts_are_deadly' may be useful while running inside a debugger.
static bool g_debug_mode; ///< Debug messages are printed
static bool g_soft_asserts_are_deadly; ///< soft_assert() aborts as well
#ifndef print_debug_data
#define print_debug_data NULL
#endif
#define print_debug(...) \
BLOCK_START \
if (g_debug_mode) \
log_message (print_debug_data, "debug: ", __VA_ARGS__); \
BLOCK_END
static void
assertion_failure_handler (bool is_fatal, const char *file, int line,
const char *function, const char *condition)
{
if (is_fatal)
{
print_fatal ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
abort ();
}
else
print_debug ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
}
#define soft_assert(condition) \
((condition) ? true : \
(assertion_failure_handler (g_soft_asserts_are_deadly, \
__FILE__, __LINE__, __func__, #condition), false))
#define hard_assert(condition) \
((condition) ? (void) 0 : \
assertion_failure_handler (true, \
__FILE__, __LINE__, __func__, #condition))
// --- Safe memory management --------------------------------------------------
// When a memory allocation fails and we need the memory, we're usually pretty
// much fucked. Use the non-prefixed versions when there's a legitimate
// worry that an unrealistic amount of memory may be requested for allocation.
// XXX: it's not a good idea to use print_message() as it may want to allocate
// further memory for printf() and the output streams. That may fail.
static void *
xmalloc (size_t n)
{
void *p = malloc (n);
if (!p)
exit_fatal ("malloc: %s", strerror (errno));
return p;
}
static void *
xcalloc (size_t n, size_t m)
{
void *p = calloc (n, m);
if (!p && n && m)
exit_fatal ("calloc: %s", strerror (errno));
return p;
}
static void *
xrealloc (void *o, size_t n)
{
void *p = realloc (o, n);
if (!p && n)
exit_fatal ("realloc: %s", strerror (errno));
return p;
}
static void *
xreallocarray (void *o, size_t n, size_t m)
{
if (m && n > SIZE_MAX / m)
{
errno = ENOMEM;
exit_fatal ("reallocarray: %s", strerror (errno));
}
return xrealloc (o, n * m);
}
static char *
xstrdup (const char *s)
{
return strcpy (xmalloc (strlen (s) + 1), s);
}
static char *
xstrndup (const char *s, size_t n)
{
size_t size = strlen (s);
if (n > size)
n = size;
char *copy = xmalloc (n + 1);
memcpy (copy, s, n);
copy[n] = '\0';
return copy;
}
// --- Double-linked list helpers ----------------------------------------------
#define LIST_HEADER(type) \
type *next; \
type *prev;
#define LIST_PREPEND(head, link) \
BLOCK_START \
(link)->prev = NULL; \
(link)->next = (head); \
if ((link)->next) \
(link)->next->prev = (link); \
(head) = (link); \
BLOCK_END
#define LIST_UNLINK(head, link) \
BLOCK_START \
if ((link)->prev) \
(link)->prev->next = (link)->next; \
else \
(head) = (link)->next; \
if ((link)->next) \
(link)->next->prev = (link)->prev; \
BLOCK_END
#define LIST_APPEND_WITH_TAIL(head, tail, link) \
BLOCK_START \
(link)->prev = (tail); \
(link)->next = NULL; \
if ((link)->prev) \
(link)->prev->next = (link); \
else \
(head) = (link); \
(tail) = (link); \
BLOCK_END
#define LIST_UNLINK_WITH_TAIL(head, tail, link) \
BLOCK_START \
if ((tail) == (link)) \
(tail) = (link)->prev; \
LIST_UNLINK ((head), (link)); \
BLOCK_END
#define LIST_FOR_EACH(type, iter, list) \
for (type *iter = (list), *next; \
(iter && (next = iter->next)) || iter; \
iter = next)
// --- Dynamically allocated string array --------------------------------------
struct str_vector
{
char **vector;
size_t len;
size_t alloc;
};
static void
str_vector_init (struct str_vector *self)
{
self->alloc = 4;
self->len = 0;
self->vector = xcalloc (sizeof *self->vector, self->alloc);
}
static void
str_vector_free (struct str_vector *self)
{
unsigned i;
for (i = 0; i < self->len; i++)
free (self->vector[i]);
free (self->vector);
self->vector = NULL;
}
static void
str_vector_reset (struct str_vector *self)
{
str_vector_free (self);
str_vector_init (self);
}
static void
str_vector_add_owned (struct str_vector *self, char *s)
{
self->vector[self->len] = s;
if (++self->len >= self->alloc)
self->vector = xreallocarray (self->vector,
sizeof *self->vector, (self->alloc <<= 1));
self->vector[self->len] = NULL;
}
static void
str_vector_add (struct str_vector *self, const char *s)
{
str_vector_add_owned (self, xstrdup (s));
}
static void
str_vector_add_args (struct str_vector *self, const char *s, ...)
ATTRIBUTE_SENTINEL;
static void
str_vector_add_args (struct str_vector *self, const char *s, ...)
{
va_list ap;
va_start (ap, s);
while (s)
{
str_vector_add (self, s);
s = va_arg (ap, const char *);
}
va_end (ap);
}
static void
str_vector_add_vector (struct str_vector *self, char **vector)
{
while (*vector)
str_vector_add (self, *vector++);
}
static void
str_vector_remove (struct str_vector *self, size_t i)
{
hard_assert (i < self->len);
free (self->vector[i]);
memmove (self->vector + i, self->vector + i + 1,
(self->len-- - i) * sizeof *self->vector);
}
// --- Dynamically allocated strings -------------------------------------------
// Basically a string builder to abstract away manual memory management.
struct str
{
char *str; ///< String data, null terminated
size_t alloc; ///< How many bytes are allocated
size_t len; ///< How long the string actually is
};
/// We don't care about allocations that are way too large for the content, as
/// long as the allocation is below the given threshold. (Trivial heuristics.)
#define STR_SHRINK_THRESHOLD (1 << 20)
static void
str_init (struct str *self)
{
self->alloc = 16;
self->len = 0;
self->str = strcpy (xmalloc (self->alloc), "");
}
static void
str_free (struct str *self)
{
free (self->str);
self->str = NULL;
self->alloc = 0;
self->len = 0;
}
static void
str_reset (struct str *self)
{
str_free (self);
str_init (self);
}
static char *
str_steal (struct str *self)
{
char *str = self->str;
self->str = NULL;
str_free (self);
return str;
}
static void
str_ensure_space (struct str *self, size_t n)
{
// We allocate at least one more byte for the terminating null character
size_t new_alloc = self->alloc;
while (new_alloc <= self->len + n)
new_alloc <<= 1;
if (new_alloc != self->alloc)
self->str = xrealloc (self->str, (self->alloc = new_alloc));
}
static void
str_append_data (struct str *self, const void *data, size_t n)
{
str_ensure_space (self, n);
memcpy (self->str + self->len, data, n);
self->len += n;
self->str[self->len] = '\0';
}
static void
str_append_c (struct str *self, char c)
{
str_append_data (self, &c, 1);
}
static void
str_append (struct str *self, const char *s)
{
str_append_data (self, s, strlen (s));
}
static void
str_append_str (struct str *self, const struct str *another)
{
str_append_data (self, another->str, another->len);
}
static int
str_append_vprintf (struct str *self, const char *fmt, va_list va)
{
va_list ap;
int size;
va_copy (ap, va);
size = vsnprintf (NULL, 0, fmt, ap);
va_end (ap);
if (size < 0)
return -1;
va_copy (ap, va);
str_ensure_space (self, size);
size = vsnprintf (self->str + self->len, self->alloc - self->len, fmt, ap);
va_end (ap);
if (size > 0)
self->len += size;
return size;
}
static int
str_append_printf (struct str *self, const char *fmt, ...)
ATTRIBUTE_PRINTF (2, 3);
static int
str_append_printf (struct str *self, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
int size = str_append_vprintf (self, fmt, ap);
va_end (ap);
return size;
}
static void
str_remove_slice (struct str *self, size_t start, size_t length)
{
size_t end = start + length;
hard_assert (end <= self->len);
memmove (self->str + start, self->str + end, self->len - end);
self->str[self->len -= length] = '\0';
// Shrink the string if the allocation becomes way too large
if (self->alloc >= STR_SHRINK_THRESHOLD && self->len < (self->alloc >> 2))
self->str = xrealloc (self->str, self->alloc >>= 2);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
str_pack_u8 (struct str *self, uint8_t x)
{
str_append_data (self, &x, 1);
}
static void
str_pack_u16 (struct str *self, uint64_t x)
{
uint8_t tmp[2] = { x >> 8, x };
str_append_data (self, tmp, sizeof tmp);
}
static void
str_pack_u32 (struct str *self, uint32_t x)
{
uint32_t u = x;
uint8_t tmp[4] = { u >> 24, u >> 16, u >> 8, u };
str_append_data (self, tmp, sizeof tmp);
}
static void
str_pack_u64 (struct str *self, uint64_t x)
{
uint8_t tmp[8] =
{ x >> 56, x >> 48, x >> 40, x >> 32, x >> 24, x >> 16, x >> 8, x };
str_append_data (self, tmp, sizeof tmp);
}
#define str_pack_i8(self, x) str_pack_u8 ((self), (uint8_t) (x))
#define str_pack_i16(self, x) str_pack_u16 ((self), (uint16_t) (x))
#define str_pack_i32(self, x) str_pack_u32 ((self), (uint32_t) (x))
#define str_pack_i64(self, x) str_pack_u64 ((self), (uint64_t) (x))
// --- Errors ------------------------------------------------------------------
// Error reporting utilities. Inspired by GError, only much simpler.
struct error
{
char *message; ///< Textual description of the event
};
static void
error_set (struct error **e, const char *message, ...) ATTRIBUTE_PRINTF (2, 3);
static void
error_set (struct error **e, const char *message, ...)
{
if (!e)
return;
va_list ap;
va_start (ap, message);
int size = vsnprintf (NULL, 0, message, ap);
va_end (ap);
hard_assert (size >= 0);
struct error *tmp = xmalloc (sizeof *tmp);
tmp->message = xmalloc (size + 1);
va_start (ap, message);
size = vsnprintf (tmp->message, size + 1, message, ap);
va_end (ap);
hard_assert (size >= 0);
soft_assert (*e == NULL);
*e = tmp;
}
static void
error_free (struct error *e)
{
free (e->message);
free (e);
}
static void
error_propagate (struct error **destination, struct error *source)
{
if (!destination)
{
error_free (source);
return;
}
soft_assert (*destination == NULL);
*destination = source;
}
// --- String hash map ---------------------------------------------------------
// The most basic <string, managed pointer> map (or associative array).
struct str_map_link
{
LIST_HEADER (struct str_map_link)
void *data; ///< Payload
size_t key_length; ///< Length of the key without '\0'
char key[]; ///< The key for this link
};
struct str_map
{
struct str_map_link **map; ///< The hash table data itself
size_t alloc; ///< Number of allocated entries
size_t len; ///< Number of entries in the table
void (*free) (void *); ///< Callback to destruct the payload
/// Callback that transforms all key values for storage and comparison;
/// has to behave exactly like strxfrm().
size_t (*key_xfrm) (char *dest, const char *src, size_t n);
};
// As long as you don't remove the current entry, you can modify the map.
// Use `link' directly to access the data.
struct str_map_iter
{
struct str_map *map; ///< The map we're iterating
size_t next_index; ///< Next table index to search
struct str_map_link *link; ///< Current link
};
#define STR_MAP_MIN_ALLOC 16
typedef void (*str_map_free_fn) (void *);
static void
str_map_init (struct str_map *self)
{
self->alloc = STR_MAP_MIN_ALLOC;
self->len = 0;
self->free = NULL;
self->key_xfrm = NULL;
self->map = xcalloc (self->alloc, sizeof *self->map);
}
static void
str_map_free (struct str_map *self)
{
struct str_map_link **iter, **end = self->map + self->alloc;
struct str_map_link *link, *tmp;
for (iter = self->map; iter < end; iter++)
for (link = *iter; link; link = tmp)
{
tmp = link->next;
if (self->free)
self->free (link->data);
free (link);
}
free (self->map);
self->map = NULL;
}
static void
str_map_iter_init (struct str_map_iter *self, struct str_map *map)
{
self->map = map;
self->next_index = 0;
self->link = NULL;
}
static void *
str_map_iter_next (struct str_map_iter *self)
{
struct str_map *map = self->map;
if (self->link)
self->link = self->link->next;
while (!self->link)
{
if (self->next_index >= map->alloc)
return NULL;
self->link = map->map[self->next_index++];
}
return self->link->data;
}
static uint64_t
str_map_hash (const char *s, size_t len)
{
static unsigned char key[16] = "SipHash 2-4 key!";
return siphash (key, (const void *) s, len);
}
static uint64_t
str_map_pos (struct str_map *self, const char *s)
{
size_t mask = self->alloc - 1;
return str_map_hash (s, strlen (s)) & mask;
}
static uint64_t
str_map_link_hash (struct str_map_link *self)
{
return str_map_hash (self->key, self->key_length);
}
static void
str_map_resize (struct str_map *self, size_t new_size)
{
struct str_map_link **old_map = self->map;
size_t i, old_size = self->alloc;
// Only powers of two, so that we don't need to compute the modulo
hard_assert ((new_size & (new_size - 1)) == 0);
size_t mask = new_size - 1;
self->alloc = new_size;
self->map = xcalloc (self->alloc, sizeof *self->map);
for (i = 0; i < old_size; i++)
{
struct str_map_link *iter = old_map[i], *next_iter;
while (iter)
{
next_iter = iter->next;
uint64_t pos = str_map_link_hash (iter) & mask;
LIST_PREPEND (self->map[pos], iter);
iter = next_iter;
}
}
free (old_map);
}
static void
str_map_set_real (struct str_map *self, const char *key, void *value)
{
uint64_t pos = str_map_pos (self, key);
struct str_map_link *iter = self->map[pos];
for (; iter; iter = iter->next)
{
if (strcmp (key, iter->key))
continue;
// Storing the same data doesn't destroy it
if (self->free && value != iter->data)
self->free (iter->data);
if (value)
{
iter->data = value;
return;
}
LIST_UNLINK (self->map[pos], iter);
free (iter);
self->len--;
// The array should be at least 1/4 full
if (self->alloc >= (STR_MAP_MIN_ALLOC << 2)
&& self->len < (self->alloc >> 2))
str_map_resize (self, self->alloc >> 2);
return;
}
if (!value)
return;
if (self->len >= self->alloc)
{
str_map_resize (self, self->alloc << 1);
pos = str_map_pos (self, key);
}
// Link in a new element for the given <key, value> pair
size_t key_length = strlen (key);
struct str_map_link *link = xmalloc (sizeof *link + key_length + 1);
link->data = value;
link->key_length = key_length;
memcpy (link->key, key, key_length + 1);
LIST_PREPEND (self->map[pos], link);
self->len++;
}
static void
str_map_set (struct str_map *self, const char *key, void *value)
{
if (!self->key_xfrm)
{
str_map_set_real (self, key, value);
return;
}
char tmp[self->key_xfrm (NULL, key, 0) + 1];
self->key_xfrm (tmp, key, sizeof tmp);
str_map_set_real (self, tmp, value);
}
static void *
str_map_find_real (struct str_map *self, const char *key)
{
struct str_map_link *iter = self->map[str_map_pos (self, key)];
for (; iter; iter = iter->next)
if (!strcmp (key, (const char *) iter + sizeof *iter))
return iter->data;
return NULL;
}
static void *
str_map_find (struct str_map *self, const char *key)
{
if (!self->key_xfrm)
return str_map_find_real (self, key);
char tmp[self->key_xfrm (NULL, key, 0) + 1];
self->key_xfrm (tmp, key, sizeof tmp);
return str_map_find_real (self, tmp);
}
// --- File descriptor utilities -----------------------------------------------
static void
set_cloexec (int fd)
{
soft_assert (fcntl (fd, F_SETFD, fcntl (fd, F_GETFD) | FD_CLOEXEC) != -1);
}
static bool
set_blocking (int fd, bool blocking)
{
int flags = fcntl (fd, F_GETFL);
hard_assert (flags != -1);
bool prev = !(flags & O_NONBLOCK);
if (blocking)
flags &= ~O_NONBLOCK;
else
flags |= O_NONBLOCK;
hard_assert (fcntl (fd, F_SETFL, flags) != -1);
return prev;
}
static void
xclose (int fd)
{
while (close (fd) == -1)
if (!soft_assert (errno == EINTR))
break;
}
// --- Event loop --------------------------------------------------------------
#ifdef LIBERTY_WANT_POLLER
// Basically the poor man's GMainLoop/libev/libuv. It might make some sense
// to instead use those tested and proven libraries but we don't need much
// and it's interesting to implement.
// Actually it mustn't be totally shitty as scanning exercises it quite a bit.
// We sacrifice some memory to allow for O(1) and O(log n) operations.
typedef void (*poller_fd_fn) (const struct pollfd *, void *);
typedef void (*poller_timer_fn) (void *);
typedef void (*poller_idle_fn) (void *);
#define POLLER_MIN_ALLOC 16
struct poller_timer
{
struct poller_timers *timers; ///< The timers part of our poller
ssize_t index; ///< Where we are in the array, or -1
int64_t when; ///< When is the timer to expire
poller_timer_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller_fd
{
struct poller *poller; ///< Our poller
ssize_t index; ///< Where we are in the array, or -1
int fd; ///< Our file descriptor
short events; ///< The poll() events we registered for
bool closed; ///< Whether fd has been closed already
poller_fd_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller_idle
{
LIST_HEADER (struct poller_idle)
struct poller *poller; ///< Our poller
bool active; ///< Whether we're on the list
poller_idle_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct poller_timers
{
struct poller_timer **heap; ///< Min-heap of timers
size_t len; ///< Number of scheduled timers
size_t alloc; ///< Number of timers allocated
};
static void
poller_timers_init (struct poller_timers *self)
{
self->alloc = POLLER_MIN_ALLOC;
self->len = 0;
self->heap = xmalloc (self->alloc * sizeof *self->heap);
}
static void
poller_timers_free (struct poller_timers *self)
{
free (self->heap);
}
static int64_t
poller_timers_get_current_time (void)
{
#ifdef _POSIX_TIMERS
struct timespec tp;
hard_assert (clock_gettime (CLOCK_BEST, &tp) != -1);
return (int64_t) tp.tv_sec * 1000 + (int64_t) tp.tv_nsec / 1000000;
#else
struct timeval tp;
gettimeofday (&tp, NULL);
return (int64_t) tp.tv_sec * 1000 + (int64_t) tp.tv_usec / 1000;
#endif
}
static void
poller_timers_heapify_down (struct poller_timers *self, size_t index)
{
typedef struct poller_timer *timer_t;
timer_t *end = self->heap + self->len;
while (true)
{
timer_t *parent = self->heap + index;
timer_t *left = self->heap + 2 * index + 1;
timer_t *right = self->heap + 2 * index + 2;
timer_t *lowest = parent;
if (left < end && (*left) ->when < (*lowest)->when)
lowest = left;
if (right < end && (*right)->when < (*lowest)->when)
lowest = right;
if (parent == lowest)
break;
timer_t tmp = *parent;
*parent = *lowest;
*lowest = tmp;
(*parent)->index = parent - self->heap;
(*lowest)->index = lowest - self->heap;
index = lowest - self->heap;
}
}
static void
poller_timers_remove_at_index (struct poller_timers *self, size_t index)
{
hard_assert (index < self->len);
self->heap[index]->index = -1;
if (index == --self->len)
return;
self->heap[index] = self->heap[self->len];
self->heap[index]->index = index;
poller_timers_heapify_down (self, index);
}
static void
poller_timers_dispatch (struct poller_timers *self)
{
int64_t now = poller_timers_get_current_time ();
while (self->len && self->heap[0]->when <= now)
{
struct poller_timer *timer = self->heap[0];
poller_timers_remove_at_index (self, 0);
timer->dispatcher (timer->user_data);
}
}
static void
poller_timers_heapify_up (struct poller_timers *self, size_t index)
{
while (index != 0)
{
size_t parent = (index - 1) / 2;
if (self->heap[parent]->when <= self->heap[index]->when)
break;
struct poller_timer *tmp = self->heap[parent];
self->heap[parent] = self->heap[index];
self->heap[index] = tmp;
self->heap[parent]->index = parent;
self->heap[index] ->index = index;
index = parent;
}
}
static void
poller_timers_set (struct poller_timers *self, struct poller_timer *timer)
{
hard_assert (timer->timers == self);
if (timer->index != -1)
{
poller_timers_heapify_down (self, timer->index);
poller_timers_heapify_up (self, timer->index);
return;
}
if (self->len == self->alloc)
self->heap = xreallocarray (self->heap,
self->alloc <<= 1, sizeof *self->heap);
self->heap[self->len] = timer;
timer->index = self->len;
poller_timers_heapify_up (self, self->len++);
}
static int
poller_timers_get_poll_timeout (struct poller_timers *self)
{
if (!self->len)
return -1;
int64_t timeout = self->heap[0]->when - poller_timers_get_current_time ();
if (timeout <= 0)
return 0;
if (timeout > INT_MAX)
return INT_MAX;
return timeout;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_idle_dispatch (struct poller_idle *list)
{
struct poller_idle *iter, *next;
for (iter = list; iter; iter = next)
{
next = iter->next;
iter->dispatcher (iter->user_data);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#ifdef __linux__
#include <sys/epoll.h>
struct poller
{
int epoll_fd; ///< The epoll FD
struct poller_fd **fds; ///< Information associated with each FD
int *dummy; ///< For poller_remove_from_dispatch()
struct epoll_event *revents; ///< Output array for epoll_wait()
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
struct poller_timers timers; ///< Timeouts
struct poller_idle *idle; ///< Idle events
int revents_len; ///< Number of entries in `revents'
};
static void
poller_init (struct poller *self)
{
self->epoll_fd = epoll_create (POLLER_MIN_ALLOC);
hard_assert (self->epoll_fd != -1);
set_cloexec (self->epoll_fd);
self->len = 0;
self->alloc = POLLER_MIN_ALLOC;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->dummy = xcalloc (self->alloc, sizeof *self->dummy);
self->revents = xcalloc (self->alloc, sizeof *self->revents);
self->revents_len = 0;
poller_timers_init (&self->timers);
self->idle = NULL;
}
static void
poller_free (struct poller *self)
{
for (size_t i = 0; i < self->len; i++)
{
struct poller_fd *fd = self->fds[i];
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, fd->fd, (void *) "") != -1);
}
poller_timers_free (&self->timers);
xclose (self->epoll_fd);
free (self->fds);
free (self->dummy);
free (self->revents);
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
hard_assert (self->alloc != 0);
self->revents = xreallocarray
(self->revents, sizeof *self->revents, self->alloc);
self->fds = xreallocarray
(self->fds, sizeof *self->fds, self->alloc);
self->dummy = xreallocarray
(self->dummy, sizeof *self->dummy, self->alloc);
}
static short
poller_epoll_to_poll_events (uint32_t events)
{
short result = 0;
if (events & EPOLLIN) result |= POLLIN;
if (events & EPOLLOUT) result |= POLLOUT;
if (events & EPOLLERR) result |= POLLERR;
if (events & EPOLLHUP) result |= POLLHUP;
if (events & EPOLLPRI) result |= POLLPRI;
return result;
}
static uint32_t
poller_poll_to_epoll_events (short events)
{
uint32_t result = 0;
if (events & POLLIN) result |= EPOLLIN;
if (events & POLLOUT) result |= EPOLLOUT;
if (events & POLLERR) result |= EPOLLERR;
if (events & POLLHUP) result |= EPOLLHUP;
if (events & POLLPRI) result |= EPOLLPRI;
return result;
}
static void
poller_set (struct poller *self, struct poller_fd *fd)
{
hard_assert (fd->poller == self);
bool modifying = true;
if (fd->index == -1)
{
poller_ensure_space (self);
self->fds[fd->index = self->len++] = fd;
modifying = false;
}
struct epoll_event event;
event.events = poller_poll_to_epoll_events (fd->events);
event.data.ptr = fd;
hard_assert (epoll_ctl (self->epoll_fd,
modifying ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, fd->fd, &event) != -1);
}
static int
poller_compare_fds (const void *ax, const void *bx)
{
const struct epoll_event *ay = ax, *by = bx;
struct poller_fd *a = ay->data.ptr, *b = by->data.ptr;
return a->fd - b->fd;
}
static void
poller_remove_from_dispatch (struct poller *self, const struct poller_fd *fd)
{
if (!self->revents_len)
return;
struct epoll_event key = { .data.ptr = (void *) fd }, *fd_event;
if ((fd_event = bsearch (&key, self->revents,
self->revents_len, sizeof *self->revents, poller_compare_fds)))
{
fd_event->events = -1;
// Don't let any further bsearch()'s touch possibly freed memory
int *dummy = self->dummy + (fd_event - self->revents);
*dummy = fd->fd;
fd_event->data.ptr =
(uint8_t *) dummy - offsetof (struct poller_fd, fd);
}
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_fd *fd = self->fds[index];
fd->index = -1;
poller_remove_from_dispatch (self, fd);
if (!fd->closed)
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, fd->fd, (void *) "") != -1);
if (index != --self->len)
{
self->fds[index] = self->fds[self->len];
self->fds[index]->index = index;
}
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (!self->revents_len);
int n_fds;
do
n_fds = epoll_wait (self->epoll_fd, self->revents, self->len,
self->idle ? 0 : poller_timers_get_poll_timeout (&self->timers));
while (n_fds == -1 && errno == EINTR);
if (n_fds == -1)
exit_fatal ("%s: %s", "epoll", strerror (errno));
// Sort them by file descriptor number for binary search
qsort (self->revents, n_fds, sizeof *self->revents, poller_compare_fds);
self->revents_len = n_fds;
poller_timers_dispatch (&self->timers);
poller_idle_dispatch (self->idle);
for (int i = 0; i < n_fds; i++)
{
struct epoll_event *revents = self->revents + i;
if (revents->events == (uint32_t) -1)
continue;
struct poller_fd *fd = revents->data.ptr;
hard_assert (fd->index != -1);
struct pollfd pfd;
pfd.fd = fd->fd;
pfd.revents = poller_epoll_to_poll_events (revents->events);
pfd.events = fd->events;
fd->dispatcher (&pfd, fd->user_data);
}
self->revents_len = 0;
}
#else // ! __linux__
struct poller
{
struct pollfd *fds; ///< Polled descriptors
struct poller_fd **fds_data; ///< Additional information for each FD
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
struct poller_timers timers; ///< Timers
struct poller_idle *idle; ///< Idle events
int dispatch_next; ///< The next dispatched FD or -1
};
static void
poller_init (struct poller *self)
{
self->alloc = POLLER_MIN_ALLOC;
self->len = 0;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->fds_data = xcalloc (self->alloc, sizeof *self->fds_data);
poller_timers_init (&self->timers);
self->dispatch_next = -1;
}
static void
poller_free (struct poller *self)
{
free (self->fds);
free (self->fds_data);
poller_timers_free (&self->timers);
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
self->fds = xreallocarray (self->fds, sizeof *self->fds, self->alloc);
self->fds_data = xreallocarray
(self->fds_data, sizeof *self->fds_data, self->alloc);
}
static void
poller_set (struct poller *self, struct poller_fd *fd)
{
hard_assert (fd->poller == self);
if (fd->index == -1)
{
poller_ensure_space (self);
self->fds_data[fd->index = self->len++] = fd;
}
struct pollfd *new_entry = self->fds + fd->index;
memset (new_entry, 0, sizeof *new_entry);
new_entry->fd = fd->fd;
new_entry->events = fd->events;
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_fd *fd = self->fds_data[index];
fd->index = -1;
if (index == --self->len)
return;
// Make sure that we don't disrupt the dispatch loop; kind of crude
if ((int) index < self->dispatch_next)
{
memmove (self->fds + index, self->fds + index + 1,
(self->len - index) * sizeof *self->fds);
memmove (self->fds_data + index, self->fds_data + index + 1,
(self->len - index) * sizeof *self->fds_data);
for (size_t i = index; i < self->len; i++)
self->fds_data[i]->index = i;
self->dispatch_next--;
}
else
{
self->fds[index] = self->fds [self->len];
self->fds_data[index] = self->fds_data[self->len];
self->fds_data[index]->index = index;
}
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (self->dispatch_next == -1);
int result;
do
result = poll (self->fds, self->len,
self->idle ? 0 : poller_timers_get_poll_timeout (&self->timers));
while (result == -1 && errno == EINTR);
if (result == -1)
exit_fatal ("%s: %s", "poll", strerror (errno));
poller_timers_dispatch (&self->timers);
poller_idle_dispatch (self->idle);
for (int i = 0; i < (int) self->len; )
{
struct pollfd pfd = self->fds[i];
struct poller_fd *fd = self->fds_data[i];
self->dispatch_next = ++i;
if (pfd.revents)
fd->dispatcher (&pfd, fd->user_data);
i = self->dispatch_next;
}
self->dispatch_next = -1;
}
#endif // ! __linux__
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_timer_init (struct poller_timer *self, struct poller *poller)
{
memset (self, 0, sizeof *self);
self->timers = &poller->timers;
self->index = -1;
}
static void
poller_timer_set (struct poller_timer *self, int timeout_ms)
{
self->when = poller_timers_get_current_time () + timeout_ms;
poller_timers_set (self->timers, self);
}
static void
poller_timer_reset (struct poller_timer *self)
{
if (self->index != -1)
poller_timers_remove_at_index (self->timers, self->index);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_idle_init (struct poller_idle *self, struct poller *poller)
{
memset (self, 0, sizeof *self);
self->poller = poller;
}
static void
poller_idle_set (struct poller_idle *self)
{
if (self->active)
return;
LIST_PREPEND (self->poller->idle, self);
self->active = true;
}
static void
poller_idle_reset (struct poller_idle *self)
{
if (!self->active)
return;
LIST_UNLINK (self->poller->idle, self);
self->prev = NULL;
self->next = NULL;
self->active = false;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_fd_init (struct poller_fd *self, struct poller *poller, int fd)
{
memset (self, 0, sizeof *self);
self->poller = poller;
self->index = -1;
self->fd = fd;
}
static void
poller_fd_set (struct poller_fd *self, short events)
{
self->events = events;
poller_set (self->poller, self);
}
static void
poller_fd_reset (struct poller_fd *self)
{
if (self->index != -1)
poller_remove_at_index (self->poller, self->index);
}
#endif // LIBERTY_WANT_POLLER
// --- libuv-style write adaptor -----------------------------------------------
// Makes it possible to use iovec to write multiple data chunks at once.
typedef struct write_req write_req_t;
struct write_req
{
LIST_HEADER (write_req_t)
struct iovec data; ///< Data to be written
};
typedef struct write_queue write_queue_t;
struct write_queue
{
write_req_t *head; ///< The head of the queue
write_req_t *tail; ///< The tail of the queue
size_t head_offset; ///< Offset into the head
size_t len;
};
static void
write_queue_init (struct write_queue *self)
{
self->head = self->tail = NULL;
self->head_offset = 0;
self->len = 0;
}
static void
write_queue_free (struct write_queue *self)
{
for (write_req_t *iter = self->head, *next; iter; iter = next)
{
next = iter->next;
free (iter->data.iov_base);
free (iter);
}
}
static void
write_queue_add (struct write_queue *self, write_req_t *req)
{
LIST_APPEND_WITH_TAIL (self->head, self->tail, req);
self->len++;
}
static void
write_queue_processed (struct write_queue *self, size_t len)
{
while (self->head
&& self->head_offset + len >= self->head->data.iov_len)
{
write_req_t *head = self->head;
len -= (head->data.iov_len - self->head_offset);
self->head_offset = 0;
LIST_UNLINK_WITH_TAIL (self->head, self->tail, head);
self->len--;
free (head->data.iov_base);
free (head);
}
self->head_offset += len;
}
static bool
write_queue_is_empty (struct write_queue *self)
{
return self->head == NULL;
}
// --- Message reader ----------------------------------------------------------
struct msg_reader
{
struct str buf; ///< Input buffer
uint64_t offset; ///< Current offset in the buffer
};
static void
msg_reader_init (struct msg_reader *self)
{
str_init (&self->buf);
self->offset = 0;
}
static void
msg_reader_free (struct msg_reader *self)
{
str_free (&self->buf);
}
static void
msg_reader_compact (struct msg_reader *self)
{
str_remove_slice (&self->buf, 0, self->offset);
self->offset = 0;
}
static void
msg_reader_feed (struct msg_reader *self, const void *data, size_t len)
{
// TODO: have some mechanism to prevent flooding
msg_reader_compact (self);
str_append_data (&self->buf, data, len);
}
static void *
msg_reader_get (struct msg_reader *self, size_t *len)
{
// Try to read in the length of the message
if (self->offset + sizeof (uint64_t) > self->buf.len)
return NULL;
uint8_t *x = (uint8_t *) self->buf.str + self->offset;
uint64_t msg_len
= (uint64_t) x[0] << 56 | (uint64_t) x[1] << 48
| (uint64_t) x[2] << 40 | (uint64_t) x[3] << 32
| (uint64_t) x[4] << 24 | (uint64_t) x[5] << 16
| (uint64_t) x[6] << 8 | (uint64_t) x[7];
if (msg_len < sizeof msg_len)
{
// The message is shorter than its header
// TODO: have some mechanism to report errors
return NULL;
}
if (self->offset + msg_len < self->offset)
{
// Trying to read an insane amount of data but whatever
msg_reader_compact (self);
return NULL;
}
// Check if we've got the full message in the buffer and return it
if (self->offset + msg_len > self->buf.len)
return NULL;
// We have to subtract the header from the reported length
void *data = self->buf.str + self->offset + sizeof msg_len;
self->offset += msg_len;
*len = msg_len - sizeof msg_len;
return data;
}
// --- Message unpacker --------------------------------------------------------
struct msg_unpacker
{
const char *data;
size_t offset;
size_t len;
};
static void
msg_unpacker_init (struct msg_unpacker *self, const void *data, size_t len)
{
self->data = data;
self->len = len;
self->offset = 0;
}
static size_t
msg_unpacker_get_available (struct msg_unpacker *self)
{
return self->len - self->offset;
}
#define UNPACKER_INT_BEGIN \
if (self->len - self->offset < sizeof *value) \
return false; \
uint8_t *x = (uint8_t *) self->data + self->offset; \
self->offset += sizeof *value;
static bool
msg_unpacker_u8 (struct msg_unpacker *self, uint8_t *value)
{
UNPACKER_INT_BEGIN
*value = x[0];
return true;
}
static bool
msg_unpacker_u16 (struct msg_unpacker *self, uint16_t *value)
{
UNPACKER_INT_BEGIN
*value
= (uint16_t) x[0] << 24 | (uint16_t) x[1] << 16;
return true;
}
static bool
msg_unpacker_u32 (struct msg_unpacker *self, uint32_t *value)
{
UNPACKER_INT_BEGIN
*value
= (uint32_t) x[0] << 24 | (uint32_t) x[1] << 16
| (uint32_t) x[2] << 8 | (uint32_t) x[3];
return true;
}
static bool
msg_unpacker_u64 (struct msg_unpacker *self, uint64_t *value)
{
UNPACKER_INT_BEGIN
*value
= (uint64_t) x[0] << 56 | (uint64_t) x[1] << 48
| (uint64_t) x[2] << 40 | (uint64_t) x[3] << 32
| (uint64_t) x[4] << 24 | (uint64_t) x[5] << 16
| (uint64_t) x[6] << 8 | (uint64_t) x[7];
return true;
}
#define msg_unpacker_i8(self, value) \
msg_unpacker_u8 ((self), (uint8_t *) (value))
#define msg_unpacker_i16(self, value) \
msg_unpacker_u16 ((self), (uint16_t *) (value))
#define msg_unpacker_i32(self, value) \
msg_unpacker_u32 ((self), (uint32_t *) (value))
#define msg_unpacker_i64(self, value) \
msg_unpacker_u64 ((self), (uint64_t *) (value))
#undef UNPACKER_INT_BEGIN
// --- Message packer and writer -----------------------------------------------
// Use str_pack_*() or other methods to append to the internal buffer, then
// flush it to get a nice frame. Handy for iovec.
struct msg_writer
{
struct str buf; ///< Holds the message data
};
static void
msg_writer_init (struct msg_writer *self)
{
str_init (&self->buf);
// Placeholder for message length
str_append_data (&self->buf, "\x00\x00\x00\x00" "\x00\x00\x00\x00", 8);
}
static void *
msg_writer_flush (struct msg_writer *self, size_t *len)
{
// Update the message length
uint64_t x = self->buf.len;
uint8_t tmp[8] =
{ x >> 56, x >> 48, x >> 40, x >> 32, x >> 24, x >> 16, x >> 8, x };
memcpy (self->buf.str, tmp, sizeof tmp);
*len = x;
return str_steal (&self->buf);
}
// --- ASCII -------------------------------------------------------------------
static int
tolower_ascii (int c)
{
return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
}
static size_t
tolower_ascii_strxfrm (char *dest, const char *src, size_t n)
{
size_t len = strlen (src);
while (n-- && (*dest++ = tolower_ascii (*src++)))
;
return len;
}
static int
strcasecmp_ascii (const char *a, const char *b)
{
int x;
while (*a || *b)
if ((x = tolower_ascii (*(const unsigned char *) a++)
- tolower_ascii (*(const unsigned char *) b++)))
return x;
return 0;
}
static bool
isspace_ascii (int c)
{
return c == '\f' || c == '\n' || c == '\r' || c == '\t' || c == '\v';
}
// --- UTF-8 -------------------------------------------------------------------
/// Return a pointer to the next UTF-8 character, or NULL on error
// TODO: decode the sequence while we're at it
static const char *
utf8_next (const char *s, size_t len)
{
// End of string, we go no further
if (!len)
return NULL;
// In the middle of a character -> error
const uint8_t *p = (const unsigned char *) s;
if ((*p & 0xC0) == 0x80)
return NULL;
// Find out how long the sequence is
unsigned mask = 0xC0;
unsigned tail_len = 0;
while ((*p & mask) == mask)
{
// Invalid start of sequence
if (mask == 0xFE)
return NULL;
mask |= mask >> 1;
tail_len++;
}
p++;
// Check the rest of the sequence
if (tail_len > --len)
return NULL;
while (tail_len--)
if ((*p++ & 0xC0) != 0x80)
return NULL;
return (const char *) p;
}
/// Very rough UTF-8 validation, just makes sure codepoints can be iterated
// TODO: also validate the codepoints
static bool
utf8_validate (const char *s, size_t len)
{
const char *next;
while (len)
{
if (!(next = utf8_next (s, len)))
return false;
len -= next - s;
s = next;
}
return true;
}
// --- Base 64 -----------------------------------------------------------------
static uint8_t g_base64_table[256] =
{
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 62, 64, 64, 64, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 64, 64, 0, 64, 64,
64, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 64, 64, 64, 64, 64,
64, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static inline bool
base64_decode_group (const char **s, bool ignore_ws, struct str *output)
{
uint8_t input[4];
size_t loaded = 0;
for (; loaded < 4; (*s)++)
{
if (!**s)
return loaded == 0;
if (!ignore_ws || !isspace_ascii (**s))
input[loaded++] = **s;
}
size_t len = 3;
if (input[0] == '=' || input[1] == '=')
return false;
if (input[2] == '=' && input[3] != '=')
return false;
if (input[2] == '=')
len--;
if (input[3] == '=')
len--;
uint8_t a = g_base64_table[input[0]];
uint8_t b = g_base64_table[input[1]];
uint8_t c = g_base64_table[input[2]];
uint8_t d = g_base64_table[input[3]];
if (((a | b) | (c | d)) & 0x40)
return false;
uint32_t block = a << 18 | b << 12 | c << 6 | d;
switch (len)
{
case 1:
str_append_c (output, block >> 16);
break;
case 2:
str_append_c (output, block >> 16);
str_append_c (output, block >> 8);
break;
case 3:
str_append_c (output, block >> 16);
str_append_c (output, block >> 8);
str_append_c (output, block);
}
return true;
}
static bool
base64_decode (const char *s, bool ignore_ws, struct str *output)
{
while (*s)
if (!base64_decode_group (&s, ignore_ws, output))
return false;
return true;
}
static void
base64_encode (const void *data, size_t len, struct str *output)
{
const char *alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const uint8_t *p = data;
size_t n_groups = len / 3;
size_t tail = len - n_groups * 3;
uint32_t group;
for (; n_groups--; p += 3)
{
group = p[0] << 16 | p[1] << 8 | p[2];
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, alphabet[(group >> 6) & 63]);
str_append_c (output, alphabet[ group & 63]);
}
switch (tail)
{
case 2:
group = p[0] << 16 | p[1] << 8;
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, alphabet[(group >> 6) & 63]);
str_append_c (output, '=');
break;
case 1:
group = p[0] << 16;
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, '=');
str_append_c (output, '=');
default:
break;
}
}
// --- Utilities ---------------------------------------------------------------
static void
split_str_ignore_empty (const char *s, char delimiter, struct str_vector *out)
{
const char *begin = s, *end;
while ((end = strchr (begin, delimiter)))
{
if (begin != end)
str_vector_add_owned (out, xstrndup (begin, end - begin));
begin = ++end;
}
if (*begin)
str_vector_add (out, begin);
}
static char *
strip_str_in_place (char *s, const char *stripped_chars)
{
char *end = s + strlen (s);
while (end > s && strchr (stripped_chars, end[-1]))
*--end = '\0';
char *start = s + strspn (s, stripped_chars);
if (start > s)
memmove (s, start, end - start + 1);
return s;
}
static char *
join_str_vector (const struct str_vector *v, char delimiter)
{
if (!v->len)
return xstrdup ("");
struct str result;
str_init (&result);
str_append (&result, v->vector[0]);
for (size_t i = 1; i < v->len; i++)
str_append_printf (&result, "%c%s", delimiter, v->vector[i]);
return str_steal (&result);
}
static char *xstrdup_printf (const char *, ...) ATTRIBUTE_PRINTF (1, 2);
static char *
xstrdup_printf (const char *format, ...)
{
va_list ap;
struct str tmp;
str_init (&tmp);
va_start (ap, format);
str_append_vprintf (&tmp, format, ap);
va_end (ap);
return str_steal (&tmp);
}
static char *
iconv_xstrdup (iconv_t conv, char *in, size_t in_len, size_t *out_len)
{
char *buf, *buf_ptr;
size_t out_left, buf_alloc;
buf = buf_ptr = xmalloc (out_left = buf_alloc = 64);
char *in_ptr = in;
if (in_len == (size_t) -1)
in_len = strlen (in) + 1;
while (iconv (conv, (char **) &in_ptr, &in_len,
(char **) &buf_ptr, &out_left) == (size_t) -1)
{
if (errno != E2BIG)
{
free (buf);
return NULL;
}
out_left += buf_alloc;
char *new_buf = xrealloc (buf, buf_alloc <<= 1);
buf_ptr += new_buf - buf;
buf = new_buf;
}
if (out_len)
*out_len = buf_alloc - out_left;
return buf;
}
static bool
str_append_env_path (struct str *output, const char *var, bool only_absolute)
{
const char *value = getenv (var);
if (!value || (only_absolute && *value != '/'))
return false;
str_append (output, value);
return true;
}
static void
get_xdg_home_dir (struct str *output, const char *var, const char *def)
{
str_reset (output);
if (!str_append_env_path (output, var, true))
{
str_append_env_path (output, "HOME", false);
str_append_c (output, '/');
str_append (output, def);
}
}
static void
get_xdg_config_dirs (struct str_vector *out)
{
struct str config_home;
str_init (&config_home);
get_xdg_home_dir (&config_home, "XDG_CONFIG_HOME", ".config");
str_vector_add (out, config_home.str);
str_free (&config_home);
const char *xdg_config_dirs;
if ((xdg_config_dirs = getenv ("XDG_CONFIG_DIRS")))
split_str_ignore_empty (xdg_config_dirs, ':', out);
}
static char *
resolve_config_filename (const char *filename)
{
// Absolute path is absolute
if (*filename == '/')
return xstrdup (filename);
struct str_vector paths;
str_vector_init (&paths);
get_xdg_config_dirs (&paths);
struct str file;
str_init (&file);
char *result = NULL;
for (unsigned i = 0; i < paths.len; i++)
{
// As per spec, relative paths are ignored
if (*paths.vector[i] != '/')
continue;
str_reset (&file);
str_append_printf (&file, "%s/" PROGRAM_NAME "/%s",
paths.vector[i], filename);
struct stat st;
if (!stat (file.str, &st))
{
result = str_steal (&file);
break;
}
}
str_vector_free (&paths);
str_free (&file);
return result;
}
static bool
ensure_directory_existence (const char *path, struct error **e)
{
struct stat st;
if (stat (path, &st))
{
if (mkdir (path, S_IRWXU | S_IRWXG | S_IRWXO))
{
error_set (e, "cannot create directory `%s': %s",
path, strerror (errno));
return false;
}
}
else if (!S_ISDIR (st.st_mode))
{
error_set (e, "cannot create directory `%s': %s",
path, "file exists but is not a directory");
return false;
}
return true;
}
static bool
mkdir_with_parents (char *path, struct error **e)
{
char *p = path;
// XXX: This is prone to the TOCTTOU problem. The solution would be to
// rewrite the function using the {mkdir,fstat}at() functions from
// POSIX.1-2008, ideally returning a file descriptor to the open
// directory, with the current code as a fallback. Or to use chdir().
while ((p = strchr (p + 1, '/')))
{
*p = '\0';
bool success = ensure_directory_existence (path, e);
*p = '/';
if (!success)
return false;
}
return ensure_directory_existence (path, e);
}
static bool
set_boolean_if_valid (bool *out, const char *s)
{
if (!strcasecmp (s, "yes")) *out = true;
else if (!strcasecmp (s, "no")) *out = false;
else if (!strcasecmp (s, "on")) *out = true;
else if (!strcasecmp (s, "off")) *out = false;
else if (!strcasecmp (s, "true")) *out = true;
else if (!strcasecmp (s, "false")) *out = false;
else return false;
return true;
}
static bool
xstrtoul (unsigned long *out, const char *s, int base)
{
char *end;
errno = 0;
*out = strtoul (s, &end, base);
return errno == 0 && !*end && end != s;
}
static bool
read_line (FILE *fp, struct str *s)
{
int c;
bool at_end = true;
str_reset (s);
while ((c = fgetc (fp)) != EOF)
{
at_end = false;
if (c == '\r')
continue;
if (c == '\n')
break;
str_append_c (s, c);
}
return !at_end;
}
static char *
format_host_port_pair (const char *host, const char *port)
{
// IPv6 addresses mess with the "colon notation"; let's go with RFC 2732
if (strchr (host, ':'))
return xstrdup_printf ("[%s]:%s", host, port);
return xstrdup_printf ("%s:%s", host, port);
}
// --- OpenSSL -----------------------------------------------------------------
#ifdef LIBERTY_WANT_SSL
#define XSSL_ERROR_TRY_AGAIN INT_MAX
/// A small wrapper around SSL_get_error() to simplify further handling
static int
xssl_get_error (SSL *ssl, int result, const char **error_info)
{
int error = SSL_get_error (ssl, result);
switch (error)
{
case SSL_ERROR_NONE:
case SSL_ERROR_ZERO_RETURN:
case SSL_ERROR_WANT_READ:
case SSL_ERROR_WANT_WRITE:
return error;
case SSL_ERROR_SYSCALL:
if ((error = ERR_get_error ()))
*error_info = ERR_error_string (error, NULL);
else if (result == 0)
// An EOF that's not according to the protocol is still an EOF
return SSL_ERROR_ZERO_RETURN;
else
{
if (errno == EINTR)
return XSSL_ERROR_TRY_AGAIN;
*error_info = strerror (errno);
}
return SSL_ERROR_SSL;
default:
if ((error = ERR_get_error ()))
*error_info = ERR_error_string (error, NULL);
else
*error_info = "Unknown error";
return SSL_ERROR_SSL;
}
}
#endif // LIBERTY_WANT_SSL
// --- Regular expressions -----------------------------------------------------
static regex_t *
regex_compile (const char *regex, int flags, struct error **e)
{
regex_t *re = xmalloc (sizeof *re);
int err = regcomp (re, regex, flags);
if (!err)
return re;
char buf[regerror (err, re, NULL, 0)];
regerror (err, re, buf, sizeof buf);
free (re);
error_set (e, "%s: %s", "failed to compile regular expression", buf);
return NULL;
}
static void
regex_free (void *regex)
{
regfree (regex);
free (regex);
}
// The cost of hashing a string is likely to be significantly smaller than that
// of compiling the whole regular expression anew, so here is a simple cache.
// Adding basic support for subgroups is easy: check `re_nsub' and output into
// a `struct str_vector' (if all we want is the substrings).
static void
regex_cache_init (struct str_map *cache)
{
str_map_init (cache);
cache->free = regex_free;
}
static bool
regex_cache_match (struct str_map *cache, const char *regex, int flags,
const char *s, struct error **e)
{
regex_t *re = str_map_find (cache, regex);
if (!re)
{
re = regex_compile (regex, flags, e);
if (!re)
return false;
str_map_set (cache, regex, re);
}
return regexec (re, s, 0, NULL, 0) != REG_NOMATCH;
}
// --- Configuration -----------------------------------------------------------
// The keys are stripped of surrounding whitespace, the values are not.
struct config_item
{
const char *key;
const char *default_value;
const char *description;
};
static void
load_config_defaults (struct str_map *config, const struct config_item *table)
{
for (; table->key != NULL; table++)
if (table->default_value)
str_map_set (config, table->key, xstrdup (table->default_value));
else
str_map_set (config, table->key, NULL);
}
static bool
read_config_file (struct str_map *config, struct error **e)
{
char *filename = resolve_config_filename (PROGRAM_NAME ".conf");
if (!filename)
return true;
FILE *fp = fopen (filename, "r");
if (!fp)
{
error_set (e, "could not open `%s' for reading: %s",
filename, strerror (errno));
free (filename);
return false;
}
struct str line;
str_init (&line);
bool errors = false;
for (unsigned line_no = 1; read_line (fp, &line); line_no++)
{
char *start = line.str;
if (*start == '#')
continue;
while (isspace (*start))
start++;
char *end = strchr (start, '=');
if (end)
{
char *value = end + 1;
do
*end = '\0';
while (isspace (*--end));
str_map_set (config, start, xstrdup (value));
}
else if (*start)
{
error_set (e, "line %u in config: %s", line_no, "malformed input");
errors = true;
break;
}
}
str_free (&line);
fclose (fp);
free (filename);
return !errors;
}
static char *
write_default_config (const char *filename, const char *prolog,
const struct config_item *table, struct error **e)
{
struct str path, base;
str_init (&path);
str_init (&base);
if (filename)
{
char *tmp = xstrdup (filename);
str_append (&path, dirname (tmp));
strcpy (tmp, filename);
str_append (&base, basename (tmp));
free (tmp);
}
else
{
get_xdg_home_dir (&path, "XDG_CONFIG_HOME", ".config");
str_append (&path, "/" PROGRAM_NAME);
str_append (&base, PROGRAM_NAME ".conf");
}
if (!mkdir_with_parents (path.str, e))
goto error;
str_append_c (&path, '/');
str_append_str (&path, &base);
FILE *fp = fopen (path.str, "w");
if (!fp)
{
error_set (e, "could not open `%s' for writing: %s",
path.str, strerror (errno));
goto error;
}
if (prolog)
fputs (prolog, fp);
errno = 0;
for (; table->key != NULL; table++)
{
fprintf (fp, "# %s\n", table->description);
if (table->default_value)
fprintf (fp, "%s=%s\n", table->key, table->default_value);
else
fprintf (fp, "#%s=\n", table->key);
}
fclose (fp);
if (errno)
{
error_set (e, "writing to `%s' failed: %s", path.str, strerror (errno));
goto error;
}
str_free (&base);
return str_steal (&path);
error:
str_free (&base);
str_free (&path);
return NULL;
}
static void
call_write_default_config (const char *hint, const struct config_item *table)
{
static const char *prolog =
"# " PROGRAM_NAME " " PROGRAM_VERSION " configuration file\n"
"#\n"
"# Relative paths are searched for in ${XDG_CONFIG_HOME:-~/.config}\n"
"# /" PROGRAM_NAME " as well as in $XDG_CONFIG_DIRS/" PROGRAM_NAME "\n"
"\n";
struct error *e = NULL;
char *filename = write_default_config (hint, prolog, table, &e);
if (!filename)
{
print_error ("%s", e->message);
error_free (e);
exit (EXIT_FAILURE);
}
print_status ("configuration written to `%s'", filename);
free (filename);
}
// --- Option handler ----------------------------------------------------------
// Simple wrapper for the getopt_long API to make it easier to use and maintain.
#define OPT_USAGE_ALIGNMENT_COLUMN 30 ///< Alignment for option descriptions
enum
{
OPT_OPTIONAL_ARG = (1 << 0), ///< The argument is optional
OPT_LONG_ONLY = (1 << 1) ///< Ignore the short name in opt_string
};
// All options need to have both a short name, and a long name. The short name
// is what is returned from opt_handler_get(). It is possible to define a value
// completely out of the character range combined with the OPT_LONG_ONLY flag.
//
// When `arg_hint' is defined, the option is assumed to have an argument.
struct opt
{
int short_name; ///< The single-letter name
const char *long_name; ///< The long name
const char *arg_hint; ///< Option argument hint
int flags; ///< Option flags
const char *description; ///< Option description
};
struct opt_handler
{
int argc; ///< The number of program arguments
char **argv; ///< Program arguments
const char *arg_hint; ///< Program arguments hint
const char *description; ///< Description of the program
const struct opt *opts; ///< The list of options
size_t opts_len; ///< The length of the option array
struct option *options; ///< The list of options for getopt
char *opt_string; ///< The `optstring' for getopt
};
static void
opt_handler_free (struct opt_handler *self)
{
free (self->options);
free (self->opt_string);
}
static void
opt_handler_init (struct opt_handler *self, int argc, char **argv,
const struct opt *opts, const char *arg_hint, const char *description)
{
memset (self, 0, sizeof *self);
self->argc = argc;
self->argv = argv;
self->arg_hint = arg_hint;
self->description = description;
size_t len = 0;
for (const struct opt *iter = opts; iter->long_name; iter++)
len++;
self->opts = opts;
self->opts_len = len;
self->options = xcalloc (len + 1, sizeof *self->options);
struct str opt_string;
str_init (&opt_string);
for (size_t i = 0; i < len; i++)
{
const struct opt *opt = opts + i;
struct option *mapped = self->options + i;
mapped->name = opt->long_name;
if (!opt->arg_hint)
mapped->has_arg = no_argument;
else if (opt->flags & OPT_OPTIONAL_ARG)
mapped->has_arg = optional_argument;
else
mapped->has_arg = required_argument;
mapped->val = opt->short_name;
if (opt->flags & OPT_LONG_ONLY)
continue;
str_append_c (&opt_string, opt->short_name);
if (opt->arg_hint)
{
str_append_c (&opt_string, ':');
if (opt->flags & OPT_OPTIONAL_ARG)
str_append_c (&opt_string, ':');
}
}
self->opt_string = str_steal (&opt_string);
}
static void
opt_handler_usage (struct opt_handler *self, FILE *stream)
{
struct str usage;
str_init (&usage);
str_append_printf (&usage, "Usage: %s [OPTION]... %s\n",
self->argv[0], self->arg_hint ? self->arg_hint : "");
str_append_printf (&usage, "%s\n\n", self->description);
for (size_t i = 0; i < self->opts_len; i++)
{
struct str row;
str_init (&row);
const struct opt *opt = self->opts + i;
if (!(opt->flags & OPT_LONG_ONLY))
str_append_printf (&row, " -%c, ", opt->short_name);
else
str_append (&row, " ");
str_append_printf (&row, "--%s", opt->long_name);
if (opt->arg_hint)
str_append_printf (&row, (opt->flags & OPT_OPTIONAL_ARG)
? " [%s]" : " %s", opt->arg_hint);
// TODO: keep the indent if there are multiple lines
if (row.len + 2 <= OPT_USAGE_ALIGNMENT_COLUMN)
{
str_append (&row, " ");
str_append_printf (&usage, "%-*s%s\n",
OPT_USAGE_ALIGNMENT_COLUMN, row.str, opt->description);
}
else
str_append_printf (&usage, "%s\n%-*s%s\n", row.str,
OPT_USAGE_ALIGNMENT_COLUMN, "", opt->description);
str_free (&row);
}
fputs (usage.str, stream);
str_free (&usage);
}
static int
opt_handler_get (struct opt_handler *self)
{
return getopt_long (self->argc, self->argv,
self->opt_string, self->options, NULL);
}
// --- Unit tests --------------------------------------------------------------
// This is modeled after GTest, only remarkably simpler.
typedef void (*test_fn) (const void *data, void *fixture);
struct test_unit
{
LIST_HEADER (struct test_unit)
char *name; ///< Name of the test
size_t fixture_size; ///< Fixture size
const void *user_data; ///< User data
test_fn setup; ///< Fixture setup callback
test_fn test; ///< The test
test_fn teardown; ///< Fixture teardown callback
};
struct test
{
struct test_unit *tests; ///< List of tests
struct test_unit *tests_tail; ///< End of the list of tests
struct str_map whitelist; ///< Whitelisted tests
struct str_map blacklist; ///< Blacklisted tests
unsigned list_only : 1; ///< Just list all tests
};
static void
test_init (struct test *self, int argc, char **argv)
{
memset (self, 0, sizeof *self);
str_map_init (&self->whitelist);
str_map_init (&self->blacklist);
static const struct opt opts[] =
{
{ 'd', "debug", NULL, 0, "run in debug mode" },
{ 'h', "help", NULL, 0, "display this help and exit" },
{ 'p', "pass", "NAME", 0, "only run tests glob-matching the name" },
{ 's', "skip", "NAME", 0, "skip all tests glob-matching the name" },
{ 'l', "list", NULL, 0, "list all available tests" },
{ 0, NULL, NULL, 0, NULL }
};
struct opt_handler oh;
opt_handler_init (&oh, argc, argv, opts, NULL, "Unit test runner");
int c;
while ((c = opt_handler_get (&oh)) != -1)
switch (c)
{
case 'd':
g_debug_mode = true;
break;
case 'h':
opt_handler_usage (&oh, stdout);
exit (EXIT_SUCCESS);
case 'p':
str_map_set (&self->whitelist, optarg, (void *) 1);
break;
case 's':
str_map_set (&self->blacklist, optarg, (void *) 1);
break;
case 'l':
self->list_only = true;
break;
default:
print_error ("wrong options");
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
argc -= optind;
argv += optind;
if (argc)
{
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
opt_handler_free (&oh);
}
static void
test_add_internal (struct test *self, const char *name, size_t fixture_size,
const void *user_data, test_fn setup, test_fn test, test_fn teardown)
{
hard_assert (test != NULL);
hard_assert (name != NULL);
struct test_unit *unit = xcalloc (1, sizeof *unit);
unit->name = xstrdup (name);
unit->fixture_size = fixture_size;
unit->user_data = user_data;
unit->setup = setup;
unit->test = test;
unit->teardown = teardown;
LIST_APPEND_WITH_TAIL (self->tests, self->tests_tail, unit);
}
#define test_add(self, name, fixture_type, user_data, setup, test, teardown) \
test_add_internal ((self), (name), sizeof (fixture_type), (user_data), \
(test_fn) (setup), (test_fn) (test), (test_fn) (teardown))
#define test_add_simple(self, name, user_data, test) \
test_add_internal ((self), (name), 0, (user_data), \
NULL, (test_fn) (test), NULL)
static bool
str_map_glob_match (struct str_map *self, const char *entry)
{
struct str_map_iter iter;
str_map_iter_init (&iter, self);
while (str_map_iter_next (&iter))
if (!fnmatch (iter.link->key, entry, 0))
return true;
return false;
}
static bool
test_is_allowed (struct test *self, const char *name)
{
bool allowed = true;
if (self->whitelist.len)
allowed = str_map_glob_match (&self->whitelist, name);
if (self->blacklist.len)
allowed &= !str_map_glob_match (&self->blacklist, name);
return allowed;
}
static int
test_run (struct test *self)
{
g_soft_asserts_are_deadly = true;
LIST_FOR_EACH (struct test_unit, iter, self->tests)
{
if (!test_is_allowed (self, iter->name))
continue;
if (self->list_only)
{
printf ("%s\n", iter->name);
continue;
}
void *fixture = xcalloc (1, iter->fixture_size);
if (iter->setup)
iter->setup (iter->user_data, fixture);
fprintf (stderr, "%s: ", iter->name);
iter->test (iter->user_data, fixture);
fprintf (stderr, "OK\n");
if (iter->teardown)
iter->teardown (iter->user_data, fixture);
free (fixture);
}
LIST_FOR_EACH (struct test_unit, iter, self->tests)
{
free (iter->name);
free (iter);
}
str_map_free (&self->whitelist);
str_map_free (&self->blacklist);
return 0;
}
// --- Protocol modules --------------------------------------------------------
#include "liberty-proto.c"