745 lines
21 KiB
C++
745 lines
21 KiB
C++
#include <getopt.h>
|
|
#include <Magick++.h>
|
|
#include <onnxruntime_cxx_api.h>
|
|
#ifdef __APPLE__
|
|
#include <coreml_provider_factory.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <condition_variable>
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <regex>
|
|
#include <set>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <tuple>
|
|
|
|
#include <cstdio>
|
|
#include <cstdint>
|
|
#include <climits>
|
|
|
|
static struct {
|
|
bool cpu = false;
|
|
int debug = 0;
|
|
long batch = 1;
|
|
float threshold = 0.1;
|
|
|
|
// Execution provider name → Key → Value
|
|
std::map<std::string, std::map<std::string, std::string>> options;
|
|
} g;
|
|
|
|
// --- Configuration -----------------------------------------------------------
|
|
|
|
// Arguably, input normalization could be incorporated into models instead.
|
|
struct Config {
|
|
std::string name;
|
|
enum class Shape {NHWC, NCHW} shape = Shape::NHWC;
|
|
enum class Channels {RGB, BGR} channels = Channels::RGB;
|
|
bool normalize = false;
|
|
enum class Pad {WHITE, EDGE, STRETCH} pad = Pad::WHITE;
|
|
int size = -1;
|
|
bool sigmoid = false;
|
|
|
|
std::vector<std::string> tags;
|
|
};
|
|
|
|
static void
|
|
read_tags(const std::string &path, std::vector<std::string> &tags)
|
|
{
|
|
std::ifstream f(path);
|
|
f.exceptions(std::ifstream::badbit);
|
|
if (!f)
|
|
throw std::runtime_error("cannot read tags");
|
|
|
|
std::string line;
|
|
while (std::getline(f, line)) {
|
|
if (!line.empty() && line.back() == '\r')
|
|
line.erase(line.size() - 1);
|
|
tags.push_back(line);
|
|
}
|
|
}
|
|
|
|
static void
|
|
read_field(Config &config, std::string key, std::string value)
|
|
{
|
|
if (key == "name") {
|
|
config.name = value;
|
|
} else if (key == "shape") {
|
|
if (value == "nhwc") config.shape = Config::Shape::NHWC;
|
|
else if (value == "nchw") config.shape = Config::Shape::NCHW;
|
|
else throw std::invalid_argument("bad value for: " + key);
|
|
} else if (key == "channels") {
|
|
if (value == "rgb") config.channels = Config::Channels::RGB;
|
|
else if (value == "bgr") config.channels = Config::Channels::BGR;
|
|
else throw std::invalid_argument("bad value for: " + key);
|
|
} else if (key == "normalize") {
|
|
if (value == "true") config.normalize = true;
|
|
else if (value == "false") config.normalize = false;
|
|
else throw std::invalid_argument("bad value for: " + key);
|
|
} else if (key == "pad") {
|
|
if (value == "white") config.pad = Config::Pad::WHITE;
|
|
else if (value == "edge") config.pad = Config::Pad::EDGE;
|
|
else if (value == "stretch") config.pad = Config::Pad::STRETCH;
|
|
else throw std::invalid_argument("bad value for: " + key);
|
|
} else if (key == "size") {
|
|
config.size = std::stoi(value);
|
|
} else if (key == "interpret") {
|
|
if (value == "false") config.sigmoid = false;
|
|
else if (value == "sigmoid") config.sigmoid = true;
|
|
else throw std::invalid_argument("bad value for: " + key);
|
|
} else {
|
|
throw std::invalid_argument("unsupported config key: " + key);
|
|
}
|
|
}
|
|
|
|
static void
|
|
read_config(Config &config, const char *path)
|
|
{
|
|
std::ifstream f(path);
|
|
f.exceptions(std::ifstream::badbit);
|
|
if (!f)
|
|
throw std::runtime_error("cannot read configuration");
|
|
|
|
std::regex re(R"(^\s*([^#=]+?)\s*=\s*([^#]*?)\s*(?:#|$))",
|
|
std::regex::optimize);
|
|
std::smatch m;
|
|
|
|
std::string line;
|
|
while (std::getline(f, line)) {
|
|
if (std::regex_match(line, m, re))
|
|
read_field(config, m[1].str(), m[2].str());
|
|
}
|
|
|
|
read_tags(
|
|
std::filesystem::path(path).replace_extension("tags"), config.tags);
|
|
}
|
|
|
|
// --- Data preparation --------------------------------------------------------
|
|
|
|
static float *
|
|
image_to_nhwc(float *data, Magick::Image &image, Config::Channels channels)
|
|
{
|
|
unsigned int width = image.columns();
|
|
unsigned int height = image.rows();
|
|
|
|
auto pixels = image.getConstPixels(0, 0, width, height);
|
|
switch (channels) {
|
|
case Config::Channels::RGB:
|
|
for (unsigned int y = 0; y < height; y++) {
|
|
for (unsigned int x = 0; x < width; x++) {
|
|
auto pixel = *pixels++;
|
|
*data++ = ScaleQuantumToChar(pixel.red);
|
|
*data++ = ScaleQuantumToChar(pixel.green);
|
|
*data++ = ScaleQuantumToChar(pixel.blue);
|
|
}
|
|
}
|
|
break;
|
|
case Config::Channels::BGR:
|
|
for (unsigned int y = 0; y < height; y++) {
|
|
for (unsigned int x = 0; x < width; x++) {
|
|
auto pixel = *pixels++;
|
|
*data++ = ScaleQuantumToChar(pixel.blue);
|
|
*data++ = ScaleQuantumToChar(pixel.green);
|
|
*data++ = ScaleQuantumToChar(pixel.red);
|
|
}
|
|
}
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static float *
|
|
image_to_nchw(float *data, Magick::Image &image, Config::Channels channels)
|
|
{
|
|
unsigned int width = image.columns();
|
|
unsigned int height = image.rows();
|
|
|
|
auto pixels = image.getConstPixels(0, 0, width, height), pp = pixels;
|
|
switch (channels) {
|
|
case Config::Channels::RGB:
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).red);
|
|
pp = pixels;
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).green);
|
|
pp = pixels;
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).blue);
|
|
break;
|
|
case Config::Channels::BGR:
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).blue);
|
|
pp = pixels;
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).green);
|
|
pp = pixels;
|
|
for (unsigned int y = 0; y < height; y++)
|
|
for (unsigned int x = 0; x < width; x++)
|
|
*data++ = ScaleQuantumToChar((*pp++).red);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static Magick::Image
|
|
load(const std::string filename,
|
|
const Config &config, int64_t width, int64_t height)
|
|
{
|
|
Magick::Image image;
|
|
try {
|
|
image.read(filename);
|
|
} catch (const Magick::Warning &warning) {
|
|
if (g.debug)
|
|
fprintf(stderr, "%s: %s\n", filename.c_str(), warning.what());
|
|
}
|
|
|
|
image.autoOrient();
|
|
|
|
Magick::Geometry adjusted(width, height);
|
|
switch (config.pad) {
|
|
case Config::Pad::EDGE:
|
|
case Config::Pad::WHITE:
|
|
adjusted.greater(true);
|
|
break;
|
|
case Config::Pad::STRETCH:
|
|
adjusted.aspect(false);
|
|
}
|
|
|
|
image.resize(adjusted, Magick::LanczosFilter);
|
|
|
|
// The GraphicsMagick API doesn't offer any good options.
|
|
if (config.pad == Config::Pad::EDGE) {
|
|
MagickLib::SetImageVirtualPixelMethod(
|
|
image.image(), MagickLib::EdgeVirtualPixelMethod);
|
|
|
|
auto x = (int64_t(image.columns()) - width) / 2;
|
|
auto y = (int64_t(image.rows()) - height) / 2;
|
|
auto source = image.getConstPixels(x, y, width, height);
|
|
std::vector<MagickLib::PixelPacket>
|
|
pixels(source, source + width * height);
|
|
|
|
Magick::Image edged(Magick::Geometry(width, height), "black");
|
|
edged.classType(Magick::DirectClass);
|
|
auto target = edged.setPixels(0, 0, width, height);
|
|
memcpy(target, pixels.data(), pixels.size() * sizeof pixels[0]);
|
|
edged.syncPixels();
|
|
|
|
image = edged;
|
|
}
|
|
|
|
// Center it in a square patch of white, removing any transparency.
|
|
// image.extent() could probably be used to do the same thing.
|
|
Magick::Image white(Magick::Geometry(width, height), "white");
|
|
auto x = (white.columns() - image.columns()) / 2;
|
|
auto y = (white.rows() - image.rows()) / 2;
|
|
white.composite(image, x, y, Magick::OverCompositeOp);
|
|
white.fileName(filename);
|
|
|
|
if (g.debug > 2)
|
|
white.display();
|
|
|
|
return white;
|
|
}
|
|
|
|
// --- Inference ---------------------------------------------------------------
|
|
|
|
static void
|
|
run(std::vector<Magick::Image> &images, const Config &config,
|
|
Ort::Session &session, std::vector<int64_t> shape)
|
|
{
|
|
// For consistency, this value may be bumped to always be g.batch,
|
|
// but it does not seem to have an effect on anything.
|
|
shape[0] = images.size();
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
auto tensor = Ort::Value::CreateTensor<float>(
|
|
allocator, shape.data(), shape.size());
|
|
|
|
auto input_len = tensor.GetTensorTypeAndShapeInfo().GetElementCount();
|
|
auto input_data = tensor.GetTensorMutableData<float>(), pi = input_data;
|
|
for (int64_t i = 0; i < images.size(); i++) {
|
|
switch (config.shape) {
|
|
case Config::Shape::NCHW:
|
|
pi = image_to_nchw(pi, images.at(i), config.channels);
|
|
break;
|
|
case Config::Shape::NHWC:
|
|
pi = image_to_nhwc(pi, images.at(i), config.channels);
|
|
}
|
|
}
|
|
if (config.normalize) {
|
|
pi = input_data;
|
|
for (size_t i = 0; i < input_len; i++)
|
|
*pi++ /= 255.0;
|
|
}
|
|
|
|
std::string input_name =
|
|
session.GetInputNameAllocated(0, allocator).get();
|
|
std::string output_name =
|
|
session.GetOutputNameAllocated(0, allocator).get();
|
|
|
|
std::vector<const char *> input_names = {input_name.c_str()};
|
|
std::vector<const char *> output_names = {output_name.c_str()};
|
|
|
|
auto outputs = session.Run(Ort::RunOptions{},
|
|
input_names.data(), &tensor, input_names.size(),
|
|
output_names.data(), output_names.size());
|
|
if (outputs.size() != 1 || !outputs[0].IsTensor()) {
|
|
fprintf(stderr, "Wrong output\n");
|
|
return;
|
|
}
|
|
|
|
auto output_len = outputs[0].GetTensorTypeAndShapeInfo().GetElementCount();
|
|
auto output_data = outputs.front().GetTensorData<float>(), po = output_data;
|
|
if (output_len != shape[0] * config.tags.size()) {
|
|
fprintf(stderr, "Tags don't match the output\n");
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < images.size(); i++) {
|
|
for (size_t t = 0; t < config.tags.size(); t++) {
|
|
float value = *po++;
|
|
if (config.sigmoid)
|
|
value = 1 / (1 + std::exp(-value));
|
|
if (value > g.threshold) {
|
|
printf("%s\t%.2f\t%s\n", images.at(i).fileName().c_str(),
|
|
value, config.tags.at(t).c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
static void
|
|
parse_options(const std::string &options)
|
|
{
|
|
auto semicolon = options.find(";");
|
|
auto name = options.substr(0, semicolon);
|
|
auto sequence = options.substr(semicolon);
|
|
|
|
std::map<std::string, std::string> kv;
|
|
std::regex re(R"(;*([^;=]+)=([^;=]+))", std::regex::optimize);
|
|
std::sregex_iterator it(sequence.begin(), sequence.end(), re), end;
|
|
for (; it != end; ++it)
|
|
kv[it->str(1)] = it->str(2);
|
|
g.options.insert_or_assign(name, std::move(kv));
|
|
}
|
|
|
|
static std::tuple<std::vector<const char *>, std::vector<const char *>>
|
|
unpack_options(const std::string &provider)
|
|
{
|
|
std::vector<const char *> keys, values;
|
|
if (g.options.count(provider)) {
|
|
for (const auto &kv : g.options.at(provider)) {
|
|
keys.push_back(kv.first.c_str());
|
|
values.push_back(kv.second.c_str());
|
|
}
|
|
}
|
|
return {keys, values};
|
|
}
|
|
|
|
static void
|
|
add_providers(Ort::SessionOptions &options)
|
|
{
|
|
auto api = Ort::GetApi();
|
|
auto v_providers = Ort::GetAvailableProviders();
|
|
std::set<std::string> providers(v_providers.begin(), v_providers.end());
|
|
|
|
if (g.debug) {
|
|
printf("Providers:");
|
|
for (const auto &it : providers)
|
|
printf(" %s", it.c_str());
|
|
printf("\n");
|
|
}
|
|
|
|
// There is a string-based AppendExecutionProvider() method,
|
|
// but it cannot be used with all providers.
|
|
// TODO: Make it possible to disable providers.
|
|
// TODO: Providers will deserve some performance tuning.
|
|
|
|
if (g.cpu)
|
|
return;
|
|
|
|
#ifdef __APPLE__
|
|
if (providers.count("CoreMLExecutionProvider")) {
|
|
try {
|
|
Ort::ThrowOnError(
|
|
OrtSessionOptionsAppendExecutionProvider_CoreML(options, 0));
|
|
} catch (const std::exception &e) {
|
|
fprintf(stderr, "CoreML unavailable: %s\n", e.what());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if TENSORRT
|
|
// TensorRT should be the more performant execution provider, however:
|
|
// - it is difficult to set up (needs logging in to download),
|
|
// - with WD v1.4 ONNX models, one gets "Your ONNX model has been generated
|
|
// with INT64 weights, while TensorRT does not natively support INT64.
|
|
// Attempting to cast down to INT32." and that's not nice.
|
|
if (providers.count("TensorrtExecutionProvider")) {
|
|
OrtTensorRTProviderOptionsV2* tensorrt_options = nullptr;
|
|
Ort::ThrowOnError(api.CreateTensorRTProviderOptions(&tensorrt_options));
|
|
auto [keys, values] = unpack_options("TensorrtExecutionProvider");
|
|
if (!keys.empty()) {
|
|
Ort::ThrowOnError(api.UpdateTensorRTProviderOptions(
|
|
tensorrt_options, keys.data(), values.data(), keys.size()));
|
|
}
|
|
|
|
try {
|
|
options.AppendExecutionProvider_TensorRT_V2(*tensorrt_options);
|
|
} catch (const std::exception &e) {
|
|
fprintf(stderr, "TensorRT unavailable: %s\n", e.what());
|
|
}
|
|
api.ReleaseTensorRTProviderOptions(tensorrt_options);
|
|
}
|
|
#endif
|
|
|
|
// See CUDA-ExecutionProvider.html for documentation.
|
|
if (providers.count("CUDAExecutionProvider")) {
|
|
OrtCUDAProviderOptionsV2* cuda_options = nullptr;
|
|
Ort::ThrowOnError(api.CreateCUDAProviderOptions(&cuda_options));
|
|
auto [keys, values] = unpack_options("CUDAExecutionProvider");
|
|
if (!keys.empty()) {
|
|
Ort::ThrowOnError(api.UpdateCUDAProviderOptions(
|
|
cuda_options, keys.data(), values.data(), keys.size()));
|
|
}
|
|
|
|
try {
|
|
options.AppendExecutionProvider_CUDA_V2(*cuda_options);
|
|
} catch (const std::exception &e) {
|
|
fprintf(stderr, "CUDA unavailable: %s\n", e.what());
|
|
}
|
|
api.ReleaseCUDAProviderOptions(cuda_options);
|
|
}
|
|
|
|
if (providers.count("ROCMExecutionProvider")) {
|
|
OrtROCMProviderOptions rocm_options = {};
|
|
auto [keys, values] = unpack_options("ROCMExecutionProvider");
|
|
if (!keys.empty()) {
|
|
Ort::ThrowOnError(api.UpdateROCMProviderOptions(
|
|
&rocm_options, keys.data(), values.data(), keys.size()));
|
|
}
|
|
|
|
try {
|
|
options.AppendExecutionProvider_ROCM(rocm_options);
|
|
} catch (const std::exception &e) {
|
|
fprintf(stderr, "ROCM unavailable: %s\n", e.what());
|
|
}
|
|
}
|
|
|
|
// The CPU provider is the default fallback, if everything else fails.
|
|
}
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
struct Thumbnailing {
|
|
std::mutex input_mutex;
|
|
std::condition_variable input_cv;
|
|
std::queue<std::string> input; // All input paths
|
|
int work = 0; // Number of images requested
|
|
|
|
std::mutex output_mutex;
|
|
std::condition_variable output_cv;
|
|
std::vector<Magick::Image> output; // Processed images
|
|
int done = 0; // Finished worker threads
|
|
};
|
|
|
|
static void
|
|
thumbnail(const Config &config, int64_t width, int64_t height,
|
|
Thumbnailing &ctx)
|
|
{
|
|
while (true) {
|
|
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
|
ctx.input_cv.wait(input_lock,
|
|
[&]{ return ctx.input.empty() || ctx.work; });
|
|
if (ctx.input.empty())
|
|
break;
|
|
|
|
auto path = ctx.input.front();
|
|
ctx.input.pop();
|
|
ctx.work--;
|
|
input_lock.unlock();
|
|
|
|
Magick::Image image;
|
|
try {
|
|
image = load(path, config, width, height);
|
|
if (height != image.rows() || width != image.columns())
|
|
throw std::runtime_error("tensor mismatch");
|
|
|
|
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
|
ctx.output.push_back(image);
|
|
output_lock.unlock();
|
|
ctx.output_cv.notify_all();
|
|
} catch (const std::exception &e) {
|
|
fprintf(stderr, "%s: %s\n", path.c_str(), e.what());
|
|
|
|
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
|
ctx.work++;
|
|
input_lock.unlock();
|
|
ctx.input_cv.notify_all();
|
|
}
|
|
}
|
|
|
|
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
|
ctx.done++;
|
|
output_lock.unlock();
|
|
ctx.output_cv.notify_all();
|
|
}
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
static std::string
|
|
print_shape(const Ort::ConstTensorTypeAndShapeInfo &info)
|
|
{
|
|
std::vector<const char *> names(info.GetDimensionsCount());
|
|
info.GetSymbolicDimensions(names.data(), names.size());
|
|
|
|
auto shape = info.GetShape();
|
|
std::string result;
|
|
for (size_t i = 0; i < shape.size(); i++) {
|
|
if (shape[i] < 0)
|
|
result.append(names.at(i));
|
|
else
|
|
result.append(std::to_string(shape[i]));
|
|
result.append(" x ");
|
|
}
|
|
if (!result.empty())
|
|
result.erase(result.size() - 3);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
print_shapes(const Ort::Session &session)
|
|
{
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
for (size_t i = 0; i < session.GetInputCount(); i++) {
|
|
std::string name = session.GetInputNameAllocated(i, allocator).get();
|
|
auto info = session.GetInputTypeInfo(i);
|
|
auto shape = print_shape(info.GetTensorTypeAndShapeInfo());
|
|
printf("Input: %s: %s\n", name.c_str(), shape.c_str());
|
|
}
|
|
for (size_t i = 0; i < session.GetOutputCount(); i++) {
|
|
std::string name = session.GetOutputNameAllocated(i, allocator).get();
|
|
auto info = session.GetOutputTypeInfo(i);
|
|
auto shape = print_shape(info.GetTensorTypeAndShapeInfo());
|
|
printf("Output: %s: %s\n", name.c_str(), shape.c_str());
|
|
}
|
|
}
|
|
|
|
static void
|
|
infer(Ort::Env &env, const char *path, const std::vector<std::string> &images)
|
|
{
|
|
Config config;
|
|
read_config(config, path);
|
|
|
|
Ort::SessionOptions session_options;
|
|
add_providers(session_options);
|
|
|
|
Ort::Session session = Ort::Session(env,
|
|
std::filesystem::path(path).replace_extension("onnx").c_str(),
|
|
session_options);
|
|
|
|
if (g.debug)
|
|
print_shapes(session);
|
|
|
|
if (session.GetInputCount() != 1 || session.GetOutputCount() != 1) {
|
|
fprintf(stderr, "Invalid input or output shape\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
auto input_info = session.GetInputTypeInfo(0);
|
|
auto shape = input_info.GetTensorTypeAndShapeInfo().GetShape();
|
|
if (shape.size() != 4) {
|
|
fprintf(stderr, "Incompatible input tensor format\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (shape.at(0) > 1) {
|
|
fprintf(stderr, "Fixed batching not supported\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (shape.at(0) >= 0 && g.batch > 1) {
|
|
fprintf(stderr, "Requested batching for a non-batching model\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int64_t *height = {}, *width = {}, *channels = {};
|
|
switch (config.shape) {
|
|
case Config::Shape::NCHW:
|
|
channels = &shape[1];
|
|
height = &shape[2];
|
|
width = &shape[3];
|
|
break;
|
|
case Config::Shape::NHWC:
|
|
height = &shape[1];
|
|
width = &shape[2];
|
|
channels = &shape[3];
|
|
break;
|
|
}
|
|
|
|
// Variable dimensions don't combine well with batches.
|
|
if (*height < 0)
|
|
*height = config.size;
|
|
if (*width < 0)
|
|
*width = config.size;
|
|
if (*channels != 3 || *height < 1 || *width < 1) {
|
|
fprintf(stderr, "Incompatible input tensor format\n");
|
|
return;
|
|
}
|
|
|
|
// By only parallelizing image loads here during batching,
|
|
// they never compete for CPU time with inference.
|
|
Thumbnailing ctx;
|
|
for (const auto &path : images)
|
|
ctx.input.push(path);
|
|
|
|
auto workers = g.batch;
|
|
if (auto threads = std::thread::hardware_concurrency())
|
|
workers = std::min(workers, long(threads));
|
|
for (auto i = workers; i--; )
|
|
std::thread(thumbnail, std::ref(config), *width, *height,
|
|
std::ref(ctx)).detach();
|
|
|
|
while (true) {
|
|
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
|
ctx.work = g.batch;
|
|
input_lock.unlock();
|
|
ctx.input_cv.notify_all();
|
|
|
|
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
|
ctx.output_cv.wait(output_lock,
|
|
[&]{ return ctx.output.size() == g.batch || ctx.done == workers; });
|
|
|
|
if (!ctx.output.empty()) {
|
|
run(ctx.output, config, session, shape);
|
|
ctx.output.clear();
|
|
}
|
|
if (ctx.done == workers)
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
auto invocation_name = argv[0];
|
|
auto print_usage = [=] {
|
|
fprintf(stderr,
|
|
"Usage: %s [-b BATCH] [--cpu] [-d] [-o EP;KEY=VALUE...] "
|
|
"[-t THRESHOLD] MODEL { --pipe | [IMAGE...] }\n", invocation_name);
|
|
};
|
|
|
|
static option opts[] = {
|
|
{"batch", required_argument, 0, 'b'},
|
|
{"cpu", no_argument, 0, 'c'},
|
|
{"debug", no_argument, 0, 'd'},
|
|
{"help", no_argument, 0, 'h'},
|
|
{"options", required_argument, 0, 'o'},
|
|
{"pipe", no_argument, 0, 'p'},
|
|
{"threshold", required_argument, 0, 't'},
|
|
{nullptr, 0, 0, 0},
|
|
};
|
|
|
|
bool pipe = false;
|
|
while (1) {
|
|
int option_index = 0;
|
|
auto c = getopt_long(argc, const_cast<char *const *>(argv),
|
|
"b:cdho:pt:", opts, &option_index);
|
|
if (c == -1)
|
|
break;
|
|
|
|
char *end = nullptr;
|
|
switch (c) {
|
|
case 'b':
|
|
errno = 0, g.batch = strtol(optarg, &end, 10);
|
|
if (errno || *end || g.batch < 1 || g.batch > SHRT_MAX) {
|
|
fprintf(stderr, "Batch size must be a positive number\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
case 'c':
|
|
g.cpu = true;
|
|
break;
|
|
case 'd':
|
|
g.debug++;
|
|
break;
|
|
case 'h':
|
|
print_usage();
|
|
return 0;
|
|
case 'o':
|
|
parse_options(optarg);
|
|
break;
|
|
case 'p':
|
|
pipe = true;
|
|
break;
|
|
case 't':
|
|
errno = 0, g.threshold = strtod(optarg, &end);
|
|
if (errno || *end || !std::isfinite(g.threshold) ||
|
|
g.threshold < 0 || g.threshold > 1) {
|
|
fprintf(stderr, "Threshold must be a number within 0..1\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
default:
|
|
print_usage();
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
argv += optind;
|
|
argc -= optind;
|
|
|
|
// TODO: There's actually no need to slurp all the lines up front.
|
|
std::vector<std::string> paths;
|
|
if (pipe) {
|
|
if (argc != 1) {
|
|
print_usage();
|
|
return 1;
|
|
}
|
|
|
|
std::string line;
|
|
while (std::getline(std::cin, line))
|
|
paths.push_back(line);
|
|
} else {
|
|
if (argc < 1) {
|
|
print_usage();
|
|
return 1;
|
|
}
|
|
|
|
paths.assign(argv + 1, argv + argc);
|
|
}
|
|
|
|
// Load batched images in parallel (the first is for GM, the other for IM).
|
|
if (g.batch > 1) {
|
|
auto value = std::to_string(
|
|
std::max(std::thread::hardware_concurrency() / g.batch, 1L));
|
|
setenv("OMP_NUM_THREADS", value.c_str(), true);
|
|
setenv("MAGICK_THREAD_LIMIT", value.c_str(), true);
|
|
}
|
|
|
|
// XXX: GraphicsMagick initializes signal handlers here,
|
|
// one needs to use MagickLib::InitializeMagickEx()
|
|
// with MAGICK_OPT_NO_SIGNAL_HANDER to prevent that.
|
|
//
|
|
// ImageMagick conveniently has the opposite default.
|
|
Magick::InitializeMagick(nullptr);
|
|
|
|
OrtLoggingLevel logging = g.debug > 1
|
|
? ORT_LOGGING_LEVEL_VERBOSE
|
|
: ORT_LOGGING_LEVEL_WARNING;
|
|
|
|
// Creating an environment before initializing providers in order to avoid:
|
|
// "Attempt to use DefaultLogger but none has been registered."
|
|
Ort::Env env(logging, invocation_name);
|
|
infer(env, argv[0], paths);
|
|
return 0;
|
|
}
|