Load images in multiple threads
This worsens CPU-only times by some five percent, but can also make GPU-accelerated runtime twice as fast.
This commit is contained in:
parent
b4f28814b7
commit
36f6612603
@ -6,13 +6,17 @@
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <condition_variable>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <regex>
|
||||
#include <set>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <tuple>
|
||||
|
||||
#include <cstdio>
|
||||
@ -435,6 +439,62 @@ add_providers(Ort::SessionOptions &options)
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
struct Thumbnailing {
|
||||
std::mutex input_mutex;
|
||||
std::condition_variable input_cv;
|
||||
std::queue<std::string> input; // All input paths
|
||||
int work = 0; // Number of images requested
|
||||
|
||||
std::mutex output_mutex;
|
||||
std::condition_variable output_cv;
|
||||
std::vector<Magick::Image> output; // Processed images
|
||||
int done = 0; // Finished worker threads
|
||||
};
|
||||
|
||||
static void
|
||||
thumbnail(const Config &config, int64_t width, int64_t height,
|
||||
Thumbnailing &ctx)
|
||||
{
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
||||
ctx.input_cv.wait(input_lock,
|
||||
[&]{ return ctx.input.empty() || ctx.work; });
|
||||
if (ctx.input.empty())
|
||||
break;
|
||||
|
||||
auto path = ctx.input.front();
|
||||
ctx.input.pop();
|
||||
ctx.work--;
|
||||
input_lock.unlock();
|
||||
|
||||
Magick::Image image;
|
||||
try {
|
||||
image = load(path, config, width, height);
|
||||
if (height != image.rows() || width != image.columns())
|
||||
throw std::runtime_error("tensor mismatch");
|
||||
|
||||
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
||||
ctx.output.push_back(image);
|
||||
output_lock.unlock();
|
||||
ctx.output_cv.notify_all();
|
||||
} catch (const std::exception &e) {
|
||||
fprintf(stderr, "%s: %s\n", path.c_str(), e.what());
|
||||
|
||||
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
||||
ctx.work++;
|
||||
input_lock.unlock();
|
||||
ctx.input_cv.notify_all();
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
||||
ctx.done++;
|
||||
output_lock.unlock();
|
||||
ctx.output_cv.notify_all();
|
||||
}
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
static std::string
|
||||
print_shape(const Ort::ConstTensorTypeAndShapeInfo &info)
|
||||
{
|
||||
@ -533,30 +593,34 @@ infer(Ort::Env &env, const char *path, const std::vector<std::string> &images)
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO: Image loading is heavily parallelizable. In theory.
|
||||
std::vector<Magick::Image> batch;
|
||||
for (const auto &filename : images) {
|
||||
Magick::Image image;
|
||||
try {
|
||||
image = load(filename, config, *width, *height);
|
||||
} catch (const std::exception &e) {
|
||||
fprintf(stderr, "%s: %s\n", filename.c_str(), e.what());
|
||||
continue;
|
||||
}
|
||||
// By only parallelizing image loads here during batching,
|
||||
// they never compete for CPU time with inference.
|
||||
Thumbnailing ctx;
|
||||
for (const auto &path : images)
|
||||
ctx.input.push(path);
|
||||
for (auto i = g.batch; i--; )
|
||||
std::thread(thumbnail, std::ref(config), *width, *height,
|
||||
std::ref(ctx)).detach();
|
||||
|
||||
if (*height != image.rows() || *width != image.columns()) {
|
||||
fprintf(stderr, "%s: %s\n", filename.c_str(), "tensor mismatch");
|
||||
continue;
|
||||
}
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> input_lock(ctx.input_mutex);
|
||||
ctx.work = g.batch;
|
||||
input_lock.unlock();
|
||||
ctx.input_cv.notify_all();
|
||||
|
||||
batch.push_back(image);
|
||||
if (batch.size() == g.batch) {
|
||||
run(batch, config, session, shape);
|
||||
batch.clear();
|
||||
std::unique_lock<std::mutex> output_lock(ctx.output_mutex);
|
||||
ctx.output_cv.wait(output_lock,
|
||||
[&]{ return ctx.output.size() == g.batch || ctx.done == g.batch; });
|
||||
|
||||
// It would be possible to add dummy entries to the batch,
|
||||
// so that the model doesn't need to be rebuilt.
|
||||
if (!ctx.output.empty()) {
|
||||
run(ctx.output, config, session, shape);
|
||||
ctx.output.clear();
|
||||
}
|
||||
if (ctx.done == g.batch)
|
||||
break;
|
||||
}
|
||||
if (!batch.empty())
|
||||
run(batch, config, session, shape);
|
||||
}
|
||||
|
||||
int
|
||||
@ -649,14 +713,19 @@ main(int argc, char *argv[])
|
||||
paths.assign(argv + 1, argv + argc);
|
||||
}
|
||||
|
||||
// Load batched images in parallel (the first is for GM, the other for IM).
|
||||
if (g.batch > 1) {
|
||||
auto value = std::to_string(
|
||||
std::max(std::thread::hardware_concurrency() / g.batch, 1L));
|
||||
setenv("OMP_NUM_THREADS", value.c_str(), true);
|
||||
setenv("MAGICK_THREAD_LIMIT", value.c_str(), true);
|
||||
}
|
||||
|
||||
// XXX: GraphicsMagick initializes signal handlers here,
|
||||
// one needs to use MagickLib::InitializeMagickEx()
|
||||
// with MAGICK_OPT_NO_SIGNAL_HANDER to prevent that.
|
||||
//
|
||||
// ImageMagick conveniently has the opposite default.
|
||||
//
|
||||
// Once processing images in parallel, consider presetting
|
||||
// OMP_NUM_THREADS=1 (GM) and/or MAGICK_THREAD_LIMIT=1 (IM).
|
||||
Magick::InitializeMagick(nullptr);
|
||||
|
||||
OrtLoggingLevel logging = g.debug > 1
|
||||
|
Loading…
Reference in New Issue
Block a user